@article{OPUS4-37080, title = {Interview mit Prof. Dr. Marina Ortrud Hertrampf}, series = {promptus - W{\"u}rzburger Beitr{\"a}ge zur Romanistik}, volume = {9}, journal = {promptus - W{\"u}rzburger Beitr{\"a}ge zur Romanistik}, editor = {Hesselbach, Robert}, issn = {2510-2613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-370808}, pages = {7-13}, year = {2023}, abstract = {Interview mit Prof. Dr. Marina Ortrud Hertrampf}, language = {de} } @article{OPUS4-31409, title = {Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data}, series = {Journal of Instrumentation}, volume = {14}, journal = {Journal of Instrumentation}, organization = {The ATLAS Collaboration}, doi = {10.1088/1748-0221/14/03/P03017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-314093}, pages = {1-58}, year = {2019}, abstract = {This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb(-1) of LHC proton-proton collision data recorded at root s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03\% to 0.2\% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3\% to 0.8\% and it varies between 0.25\% and 1\% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/psi -> e(+)e(-) decays and radiative Z boson decays are also presented.}, language = {en} } @article{OPUS4-31382, title = {Dijet azimuthal correlations and conditional yields in \({pp}\) and \(p\) + Pb collisions at √S-NN=5.02 TeV with the ATLAS detector}, series = {Physical Review C}, volume = {100}, journal = {Physical Review C}, number = {3}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevC.100.034903}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313823}, pages = {1-24}, year = {2019}, abstract = {This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton (pp) and proton-lead (p + Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb(-1) of pp data and 360 mu b(-1) of p + Pb data, both at root S-NN = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the Large Hadron Collider. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between -4.0 and 4.0 using the two highest transverse-momentum jets in each event, with the highest transverse-momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in p + Pb compared to pp collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in p + Pb collisions to those in pp collisions is suppressed by approximately 20\%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets.}, language = {en} }