@article{LohseKlotzLindenbornFotinosetal.1987, author = {Lohse, M. J. and Klotz, Karl-Norbert and Lindenborn Fotinos, J. and Reddington, M. and Schwabe, U. and Olsson, R. A.}, title = {8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) - a selective high affinity antagonist radioligand for A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60246}, year = {1987}, abstract = {The properties of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) as an antagonist ligand for A\(_1\) adenosirre receptors were examined and conipared with other radioligands for this receptor. DPCPX competitively antagonized both the inhibition of adenylate cyclase activity via A\(_1\) adenosirre receptors and the stimulationvia A\(_2\) adenosirre receptors. The K\(_i\)-values of this antagonism were 0.45 nM at the A\(_1\) receptor of rat fat cells, and 330 nM at the A\(_2\) receptor of human platelets, giving a more than 700-fold A\(_1\)-selectivity. A similar A\(_1\)-selectivity was determined in radioligand binding studies. Even at high concentrations, DPCPX did not significantly inhibit the soluble cAMPphosphodiesterase activity of human platelets. [\(^3\)H]DPCPX (105 Ci/mmol) bound in a saturable manner with high affinity to A\(_1\) receptors in membranes of bovine brain and heart, and rat brain and fat cells (K\(_D\) -values 50-190 pM). Its nonspecific binding was about 1\% of total at K\(_D\) , except in bovine myocardial membranes (about 10\%). Binding studies with bovine myocardial membranes allowed the analysis of both the high and low agonist affinity states of this receptor in a tissue with low receptor density. The binding properties of [\(^3\)H]DPCPX appear superior to those of other agonist and antagonist radioligands for the A\(_1\) receptor.}, subject = {Toxikologie}, language = {en} } @article{LohseKlotzSchwabeetal.1988, author = {Lohse, M. J. and Klotz, Karl-Norbert and Schwabe, U. and Cristalli, G. and Vittori, S. and Grifantini, M.}, title = {2-Chloro-N\(^6\)-cyclopentyladenosine: a highly selective agonist at A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60279}, year = {1988}, abstract = {2-Chloro-N\(^6\)-cyclopentyladenosine (CCPA) was synthesized as a potential high affinity ligand for At adenosine receptors. Binding of [\(^3\)H]PIA to A1 receptors of rat brain membranes was inhibited by CCP A with a Ki-value of 0.4 nM, compared to a Ki-value of 0.8 nM for the parent compound N\(^6\)-cyclopentyladenosine (CPA). Binding of [\(^3\)H]NECA to A\(_2\) receptors of rat striatal membranes was inhibited with a Ki-value of 3900 nM, demonstrating an almost 10,000-fold A\(_1\)-selectivity of CCPA. CCP A inhibited the activity of rat fat cell membrane adenylate cyclase, a model for the A\(_1\) receptor, with an IC\(_{50}\)-value of 33 nM, and it stimulated the adenylate cyclase activity of human platelet membranes with an EC\(_{50}\)-value of 3500 nM. The more than 100-fold A\(_1\)-selectivity compares favourably with a 38-fold selectivity of CPA. Thus, CCPA is an agonist at A\(_1\) adenosine receptors with a 4-fold higher selectivity and 2-fold higher affinity than CPA, and a considerably higher selectivity than the standard At receptor agonist R-N\(^6\) -phenylisopropyladenosine (R-PIA). CCP A represents the agonist with the highest selectivity for A\(_1\) receptors reported so far.}, subject = {Toxikologie}, language = {en} } @article{LohseMaurerKlotzetal.1989, author = {Lohse, M. J. and Maurer, K. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Synergistic effects of calcium-mobilizing agents and adenosine on histamine release from rat peritoneal mast cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60346}, year = {1989}, abstract = {1 Adenosine and its metabolically stable analogue N.etbyl-carboxamidoadenosine (NECA) enhance histamine release from rat peritoneal mast cells when tbese are stimulated by calciummobilizing agents. NECA and adenosine shift the concentration-response curve of tbe calcium ionophore A23187 to lower concentrations. 2 The potencies of NECA or adenosinein enhancing A23187-induced histamine release are dependent on the Ievel of stimulated release in tbe absence of adenosine analogues. At high Ievels of release their potencies are up to 20 times higher than at low Ievels. Consequently, averaged concentration-response curves of adenosine and NECA for enhancing bistamine release are shallow. 3 The adenosine transport blocker S-(p-nitrobenzyl)-6-thioinosine (NBTI) has no effect by itself at low Ievels of stimulated histamine release, but abolishes the enhancing effect of adenosine. At high Ievels of release, however, NBTI alone enhances the release of histamine. 4 lt is concluded that adenosine and calcium reciprocally enhance the sensitivity of the secretory processes to the effects of the other agent. The Ievels of intracellular adenosine obtained by trapping adenosine inside stimulated mast cells are sufficient to enhance histamine release substantially, suggesting that this effect may play a physiological and pathophysiological role.}, subject = {Toxikologie}, language = {en} } @incollection{LohseKlotzMaureretal.1990, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Maurer, K. and Ott, I. and Schwabe, Ulrich}, title = {Effects of adenosine on mast cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86101}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1990}, abstract = {No abstract available}, subject = {Adenosin}, language = {en} } @article{LohseKlotzSalzeretal.1988, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Salzer, Manfred J. and Schwabe, Ulrich}, title = {Adenosine regulates the \(Ca^{2+} \) sensitivity of mast cell mediator release : (histamine secretion/inositol phosphates/calcium)}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {85}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127883}, pages = {8875-8879}, year = {1988}, abstract = {Mast cells release histamine and other mediators of allergy in response to stimulation of their IgE receptors. This release is generally thought to be mediated by an elevation of cytosolic \(Ca^{2+}\). Recent evidence suggests that there might be factors that modulate the coupling between \(Ca^{2+}\) levels and mediator release. The present report identifies adenosine as one such modulator. Adenosine and several of its metabolically stable analogues were shown to enhance histamine release from rat peritoneal mast cells in response to stimuli such as concanavalin A. Metabolizing endogenous adenosine with adenosine deaminase dampened the response to stimuli, whereas trapping endogenous adenosine inside mast cells with nucleoside-transport inhibitors markedly enhanced stimulated histamine release. The metabolically stable adenosine analogue 5' -(N-ethylcarboxamido)adenosine (NECA) did not affect the initial steps in the sequence from IgE-receptor activation to mediator release, which are generation of inositol trisphosphate and increase of cytosolic \(Ca^{2+}\). However, NECA did enhance the release induced in ATP-permeabilized cells by exogenous \(Ca^{2+}\), but it had no effect on the release induced by phorbol esters. These data suggest that adenosine sensitizes mediator release by a mechanism regulating stimulus-secretion coupling at a step distal to receptor activation and second-messenger generation.}, language = {en} } @article{LohseKlotzSchwabe1991, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Schwabe, Ulrich}, title = {Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86073}, year = {1991}, abstract = {It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxyphenytisopropyladenosine [(R)-AHPIA] into the A, adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of celular cAMP Ieveis [Mol. Pharmacol. 30:403-409 (1986)]. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenytate cyclase Stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies in-dicate that up to 90\% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20\% of A2 receptors are sufficient to mediate an adenylate cyclase Stimulation of up to SOOk of the control value. Similarly, the activation via these 10-20\% of receptors occurs with a halflife that is only 2 times Ionger than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenytate cyclase Stimulation. These observations require a modification of the models of receptor-adenytate cyclase coupling, which is described in the accompanying paper [Mol. Pharmacol. 39:524-530 (1991)].}, subject = {Adenosinrezeptor}, language = {en} } @incollection{LohseKlotzSchwabe1985, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Schwabe, Ulrich}, title = {Effects of barbiturates on A1 adenosine receptors of rat brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70100}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1985}, abstract = {Barbiturates inhibit binding of radioligands to A 1(Ri) adenosine receptors of rat brain membranes. This inhibition is dose-dependent and stereospecific and occurs in the range of pharmacologically active concentrations. The displacement of radiolabelled A1antagonists by barbiturates is not modified by GTP, indicating that barbiturates might act as antagonists at this receptor. This action of barbiturates does not seem to be related to the binding of barbiturates to plasma membranes, as the latter process has different characteristics. Barbiturates also inhibit the binding of radioligands to solubilized A1receptors, and saturation and kinetic experiments suggest that this is due to a competitive antagonism. These results indicate that barbiturates interact with the recognition site of the A1adenosine receptor.}, subject = {Barbiturat}, language = {en} } @incollection{LohseKlotzSchwabe1987, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Schwabe, Ulrich}, title = {Functional characterization of A1 adenoosine receptors by photoaffinity labelling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86097}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1987}, abstract = {The ligand-binding subunit ofthe A1 adenosine receptor has been identified in membranes with the photoaffinity Iabel R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA). Covalent labelling ofthe A1 receptor can also be achieved in intact cells. The dissociation of the radioiodinated label (1251-AHPIA) from isolated rat fat cells was incomplete after UV irradiation, leaving about 20°/o of irreversible specific binding. Such covalent labelling of the receptor led to a concentration-dependent reduction of cellular cyclic AMP levels. This persistent effect of covalent labeHing occurred with an IC50 value of 9 nM, as compared to an IC50 value of 0.9 nM for the direct reduction of cyclic AMP Ievels by the ligand. The difference in the IC5o values can be explained by assuming spare receptors. This hypothesis was verified in binding studies using [ 3HJPIA as a radioligand. R-AHPIA inhibited binding of [3H)PIA to intact fat cells with a K1 value of about 20 nM, which is about 20 tim es high er than the corresponding IC50 value of cyclic AMP reduction. These data show that the A1 receptor is activated according to the occupancy theory. The high sensitivity of the activation in intact ceJis is due to a large number of spare receptors.}, subject = {Adenosinrezeptor}, language = {en} } @article{LohseKlotzSchwabe1986, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Schwabe, Ulrich}, title = {Effectes of temperature and membrane phase transitions on ligand binding to a2-receptors of human platelets}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86023}, year = {1986}, abstract = {The binding of agonists and antagonists to a2-adrenergic receptors of human platelets was studied. The receptors showed homogeneaus affinities for antagonists but two affinity states for the agonist (-)-epinephrine, which were modulated by guanine nucleotides. Van't Hoffplots of antagonist binding had a break point at about 18° and considerable diversity between 18° and 0°. Agonist binding to both affinity states showed a similar break point; agonist binding to the high affinity state was characterized by a large entropy component compared to the low affinity state. This entropy component was reduced at higher concentrations of sodium, indicating that it may be due to Iiberation of sodium ions. Measurements of the fluorescence of 1-anilin-8-naphthalenesulfonate showed thermotropic phase transitions of theplatelet membranes at about 17°. The transition temperature was decreased to about 12° by addition of 1 0 mM octanoic acid. Octanoic acidalso shifted the break points of the van't Hoffplot of antagonist and low affinity agonist binding from 18° to 12°. High affinity agonist binding, however, remained unchanged. It is concluded that agonist-specific thennodynamic characteristics of ligand binding to a2-receptors of human platelets can only be investigated by regarding differences between high and low affinity agonist binding. These differences include an entropy increase upon Iigand binding, which is in part due to enhanced liberation of sodium ions, and a loss of sensitivity to fluidity changes in the outer layer of the plasma membrane.}, subject = {Molekularpharmakologie}, language = {en} } @article{LohseKlotzSchwabe1986, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Schwabe, Ulrich}, title = {Agonist photoaffinity labeling of A1 adenosine receptors: Persistent activation reveals spare receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87966}, year = {1986}, abstract = {No abstract available.}, subject = {Pharmazie}, language = {en} } @article{LorenzRosner2022, author = {Lorenz, Kristina and Rosner, Marsha Rich}, title = {Harnessing RKIP to combat heart disease and cancer}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers14040867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262185}, year = {2022}, abstract = {Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.}, language = {en} } @phdthesis{Lotz2023, author = {Lotz, Arietta Lucia}, title = {Eine in-vitro-Untersuchung des Einflusses von Angiotensin II und Sulforaphan auf die Modulation des oxidativen Stresses anhand der NFκB- und Nrf 2-Aktivit{\"a}t in LLC-PK1 Zellen}, doi = {10.25972/OPUS-31057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Ausgangspunkt der Arbeit ist die klinische Beobachtung, dass Patienten mit arteriellem Hypertonus vermehrt Nierenerkrankungen entwickeln. Dabei zeigten sich in der Subgruppenanalyse vor allem erh{\"o}hte Inzidenzen der Niereninsuffizienz und der Nierenzellkarzinome. Als m{\"o}glicher Pathomechanismus steht das Renin-Angiotensin-Aldosteron-System (RAAS-System) im Vordergrund. Dabei wird postuliert, dass erh{\"o}hte Angiotensin II-Spiegel zu einem Missverh{\"a}ltnis zwischen den Oxidations- und Reduktionspartnern in der Zelle f{\"u}hren, wodurch sich das oxidative Potential der Zelle {\"a}ndert, und es vermehrt zur Bildung von Radikalen (ROS) kommt, die meist ungepaarte Elektronen in der Valenzschale oder instabile Verbindungen enthalten, wodurch sie besonders reaktionsfreudig mit Proteinen, Lipiden, Kohlenhydraten und auch der DNA interagieren. In der Folge kommt es zu DNA-Ver{\"a}nderungen in Form von Doppel- oder Einzelstrangbr{\"u}chen, DNA-Protein-Crosslinks, Basenmodifikationen und Basenverlusten, wodurch sich ein hohes mutagenes Potential ergibt. Dieser Ansatz zur Pathophysiologie best{\"a}tigte sich auch an den hier verwendeten porkinen Nierenzellmodell. Dabei zeigte sich nicht nur eine Ver{\"a}nderung der genomischen Stabilit{\"a}t nach Exposition gegen{\"u}ber erh{\"o}hten Angiotensin II-Spiegeln, sondern auch eine Ver{\"a}nderung der DNA in Abh{\"a}ngigkeit von der Expositionsdauer der Zellen. Als n{\"a}chster Schritt konnte die Modulation der Transkriptionsfaktoren Nrf 2 und NF-κB durch die Behandlung mit Angiotensin II und Sulforaphan nachgewiesen werden. Bei der Behandlung mit Sulforaphan ließ sich eine Nrf 2-Induktion nachweisen mit vermehrter Expression von antioxidativen und detoxifizierender Enzyme. Weiterhin zeigte sich im Rahmen der Behandlung erniedrigte NF-κB-Level. Bei der Modulation durch Angiotensin II stellte sich zun{\"a}chst ein signifikant erniedrigtes Level an Nrf 2 in den Zellen dar, das im Verlauf von 24 Stunden anstieg und konsekutiv ließ sich eine maximale Proteinexpression zwischen 24 und 48 Stunden messen. Weiterhin wiesen die Zellen, die mit Angiotensin II behandelt wurden, erh{\"o}hte NF-κB Mengen/Zelle auf. Zudem zeigte sich der Einfluss erh{\"o}hter Glucosekonzentrationen auf eine progrediente genomischen Instabilit{\"a}t, die Ver{\"a}nderung der Transkriptionsfaktoren mit erh{\"o}hter Nrf 2-Induktion und mit Deregulation des Transkriptionsfaktors NF-κB wurde durch die Behandlung mit Sulforaphan nachgewiesen. Aufgrund dieser Rolle in der Tumorgenese sind mittlerweile einige Bestandteile des NF-κB- und des Nrf 2-Signalweges und auch Nrf 2-Aktivatoren wie Sulforaphan wichtige Zielstrukturen f{\"u}r die Entwicklung neuer Medikamente und Therapieoptionen. Besonders zeigt sich hierbei die Wichtigkeit bei Diabetes induzierten kardiovaskul{\"a}ren Folgesch{\"a}den mit fr{\"u}hzeitiger medikament{\"o}ser Behandlung.}, subject = {Oxidativer Stress}, language = {de} } @article{Lutz1991, author = {Lutz, Werner K.}, title = {Dose-response relationship for chemical carcinogenesis by genotoxic agents}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60766}, year = {1991}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{Lutz1990, author = {Lutz, Werner K.}, title = {Dose-response relationship and low dose extrapolation in chemical carcinogenesis [commentary]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60789}, year = {1990}, abstract = {Data supporting various dose-respome relationships in chemical carcinogenesis are summarized. General principles are derived to explain the relationships between exposure dose, JI>NA adduct Ievel, induction of genetic changes, and tumor incidence. Some mechanistic aspects of epigenetic carcinogens (stimulation of ceU division and maldlfl'erentlation) are analyzed in a similar way. In a bomogeneous pnpulation, non-linearities are frequent. They are due to pbenomena of induction or saturation of enzymatic activities and to the multi-step nature of carcinog~: if a carcinogen acce1erates more than one step, the SUperposition of the dose- response curves for the indJvidual steps can result in an exponential relationship. A fourth power of the dose was the maximum seen in animals (fonnaldehyde). At the lowest dose Ievels, a proportionality between dose and tumor induction is postulated independent of the mechanism of action if the carcinogen aceeierotes the endogenous proass responsible for spootaneous tumor formation. Low-dose thresholds are expected only for situations where the carcinogen acts in a way that has no endogenous counterpart. Epidemiologfcal studies in humans show linear dose- response curves in all but two investigations. The difference from the strongly nonlinear slopes ·seen in animal studies could be due to the heterogeneity of the human population: if the individual sensitivity to a carcinogen is governed by a large number of genetic and Iife-style factors, the non-linea.rities will tend to cancel each other out and the dose- response curve becomes 'quasi-linear'.}, subject = {Toxikologie}, language = {en} } @article{Lutz1990, author = {Lutz, Werner K.}, title = {Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60816}, year = {1990}, abstract = {A list ofendogenaus DNA·damaging agents and processes is given. Endogenaus e/ectrophiles are found with the cosubstrates of physiological transfer reactions (S-adenosylrnethionine for methylation, A TP for phosphorylation, NAD\(^+\) for ADP-ribosylation, acetyl CoA for acetylation). Aldehyde groups (glyceraldehyde- 3-phosphate, formaldehyde, open forms of reducing sugars, degradation products of peroxidation) or alkylating degradation products derived from endogenaus nitrose compounds represent additional possibilities. Radical-forming reactions include leakage of the superoxide anion radical from terminal cytochromes and redox cycles, hydroxyl radical formation by the Fenton reaction from endogenaus hydrogen peroxide, and the formation of lipid peroxides. Genetic instability by spontaneaus deaminations and depurinations as well as replicative instability by tautomer errors andin the presence of mutagenic metal ions represent a third important dass of endogenaus genotoxic processes. The postulated endogenaus genotoxicity could form the mechanistic basis for what is called 'spontaneous' tumor incidence and explain the possibility of an increased tumor incidence after treatment of animals with non-genotoxic compounds exhibiting tumor-promoting activity only. Individual differences are expected to be seen also with endogenaus DNA damage. The presence of endogenaus DNA darnage implies that exogenaus DNAcarcinogen adducts give rise to an incremental darnage which is expected to be proportional to the carcinogen dose at lowest Ievels. An increased tumor risk due to exposure to exogenaus genotoxic carcinogens could therefore be assessed in terms of the background DNA damage~ for instance in multiples of the mean Ievel or of the interindividual variability in a population.}, subject = {Toxikologie}, language = {en} } @article{Lutz1979, author = {Lutz, Werner K.}, title = {In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61122}, year = {1979}, abstract = {The covalent binding of chemical carcinogens to DNA of mammalian organs is expressed per unit dose, and a 'Covalent-Binding Index', CBI, is defined. CBI for various carcinogens span over 6 orders of magnitude. A similar range is observed for the carcinogenic potency in long-term bioassays on carcinogenicity. For the assessment of a risk from exposure to a carcinogen, the total DN A darnage can be estimated if the actual dose is also accounted for. A detailed description is given for planning and performing a DNA-binding assay. A complete literature survey on DNA binding in vivo (83 compounds) is given with a calculation of CBI, where possible, 153 compounds are listed where a covalent binding to any biological macromolecule has been shown in vivo or in vitro. Recent, so far unpublished findings with aflatoxin Mh macromolecule- bound aflatoxin Bh ·diethylstilbestrol, and 1,2-epithiobutyronitrile are included. A comparison of CBI for rat-liver DNA with hepatocarcinogenic potency reveals a surprisingly good quantitative correlation. Refinements for a DN A-binding assay are proposed. Possibilities and Iimitations in the use of D NA binding in chemical carcinogenesis are discussed extensively.}, subject = {Toxikologie}, language = {en} } @article{Lutz1986, author = {Lutz, Werner K.}, title = {Investigation of the potential for binding of di(2-ethylhexyl)phthalate (DEHP) to rat liver DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60957}, year = {1986}, abstract = {It was the aim of this investigation to determine whether or not covalent binding of di(2-ethylhexyl) phthalate (DEHP) to rat liver DNA could be a mechanism of action contributing to the observed induction of liver tumors after lifetime feeding of rodents with high doses of DEHP. DEHP radiolabeled in different positionswas administered orally to female F344 rats with or without pretreatment for 4 weeks with 1\% unlabeled DEHP in the diet. Livu DNA was isolated after 16 hr and analyzed for radioattivity. Administration of [\(^{14}\)C]carboxylate unabeled DEHP resulted in no measurable DNA radioactivity. With DEHP [\(^{14}\)C]· and [\(^{3}\)H]. labeled in the alcohol moiety as well as with 2-ethyl[1-\(^{14}\)C]hexanol, radioactivity was clearly measurable in the DNA. HPLC analysis of enzyme-degraded DNA relvealed that the normal nucleosides had incorporated radiolabel whereas no radioactivity was detectable in those fractions where the carcinogen-modified nucleoside adducts are expected. A quantitative evaluation of the negative data in terms of a Iimit of detection for a covalent binding Index (CBJ) indicates that covalent interaction with DNA is highly unlikely to be the mode of tumorigenic action of DEHP in rodents.}, subject = {Toxikologie}, language = {en} } @article{Lutz1986, author = {Lutz, Werner K.}, title = {Quantitative evaluation of DNA binding data for risk estimation and for classification of direct and indirect carcinogens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60967}, year = {1986}, abstract = {Investigation of covalent DNA binding in vivo provided evidence for whether a test substance can be activated to metabolites able to reach and react with DNA in an intact organism. Fora comparison of DNA binding potencies of various compounds tested under different conditions, a normalization of the DNA lesion with respect to the dose is useful. A covalent binding index, CBI = (\(\mu\)mol chemical bound per mol DNA nucleotide )/(mmol chemical administered per kg body weight) can be determined for each compound. Whether covalent DNA binding results in tumor formation is dependent upon additional factors specific to the cell type. Thus far, all compounds which bind covalently to liver DNA in vivo have also proven tobe carcinogenic in a long-term study, although the liver was not necessarily the target organ for tumor growth. With appropriate techniques, DNA binding can be determined in a dose range which may be many orders of magnitude below the dose Ievels required for significant tumor induction in a long-term bioassay. Rat liver DNA bindingwas proportional to the dose of aflatoxin B1 afteroral administration of a dose between 100 \(\mu\)g/kg and 1 ng/kg. The lowest dose was in the range of generat human daily exposures. Demonstration of a lack of liver DNA binding (CBI<0.1) in vivo for a carcinogenic, nonmutagenic compound is a strong indication for an indirect mechanism of carcinogenic action. Carcinogens of this class do not directly produce a change in gene structure or function but disturb a critical biochemical control mechanism, such as protection from oxygen radicals, control of cell division, etc. Ultimately, genetic changes are produced indirectly or accumulate from endogenaus genotoxic agents. The question of why compounds which act via indirect mechanisms are more likely to exhibitanonlinear rangein the dose-response curve as opposed to the directly genotoxic agents or processes is discussed.}, subject = {Toxikologie}, language = {en} } @article{Lutz1986, author = {Lutz, Werner K.}, title = {Endogenous formaldehyde does not produce detectable DNA-protein crosslinks in rat liver}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60972}, year = {1986}, abstract = {Formaldehydeis an electrophilic molecule able to crosslink DNA and protein. It has been found to induce tumors in the nasal epithelium in rodents. The safety margin between the maximum tolerated FA concentration in the work place and the concentration found to be tumorigenic in animal studies is very small. Because FA is produced endogenously as a result of a variety of oxidative demethylations, the assessment of the tumor risk from exogenaus FA exposure has tobe related quantitatively to the level of DNA-protein crosslinks induced by endogenaus FA generation. It is reported here that the high level of endogenaus FA formed in the liver after a large dose of methanol or of aminopyrine did not lead to any observable increase in DNA-protein crosslinks. Using positive and negative control data from in vitro incubations of liver homogenate with FA or methanol it is estimated that the endogenous level of DNA damage in the liver must be more than three orders of magnitude below the damage observed at tumorigenic concentrations for the rat nose. The fact that FA is formed endogenously cannot, therefore, be used to claim that exogenous FA merely leads to a negligible increase in DNA damage.}, subject = {Toxikologie}, language = {en} } @article{Lutz1990, author = {Lutz, Werner K.}, title = {Dosis-Wirkungs-Beziehungen in der chemischen Kanzerogenese}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80046}, year = {1990}, abstract = {Ich habe versucht darzulegen, daß mechanistische {\"U}berlegungen zur Extrapolation der Dosis-WirkungsBeziehung herangezogen werden k{\"o}nnen. Ein nichtlinearer Verlauf ist nicht nur bei den epigenetischen Kanzerogenen wahrscheinlich, sondern auch bei den DNA-bindenden. Echte Schwellen sind aber nur in solchen F{\"a}llen zu erwarten, wo kein endogenes Korrelat besteht. Immerhin k{\"o}nnen auch steile Nichtlinearit{\"a}ten zu einer drastischen Risikoreduktion f{\"u}hren, so daß die Anstrengungen dahin gehen sollten, die Steigung und den Bereich des {\"u}berproportionalen Abfalls experimentell zu zeigen. In einer heterogenen Population kann die 0 0- sis-Wirkungs-Kurve zus{\"a}tzliche "Wellen" bekommen und wird dadurch grunds{\"a}tzlich flacher. Im Extremfall ergibt sich eine lineare Dosis-Wirkungs-Beziehung unabh{\"a}ngig vom Wirkmechanismus des Kanzerogens. Diese Proportionalit{\"a}t zwischen tiefster Dosis und Effekt wird bei genotoxischen Kanzerogenen aus mechanistischen Gr{\"u}nden schon f{\"u}r eine homogene Population postuliert, doch kann dies in einer heterogenen Population auch bei epigenetischen Kanzerogenen in Frage kommen.}, subject = {Toxikologie}, language = {de} }