Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-2525 Dissertation Fischer, Stefan Martin Regulation and functional consequences of MCP-1 expression in a model of Charcot-Marie-Tooth 1B disease Charcot-Marie-Tooth 1B (CMT1B) is a progressive inherited demyelinating disease of human peripheral nervous system leading to sensory and/or motor function disability and is caused by mutations in the P0 gene. Mice heterozygously deficient for P0 (P0+/-) are an adequate model of this human disorder showing myelin degeneration, formation of onion bulbs, remyelination and a reduced motor conduction velocity of around 30m/s similar to patients. Previously, it had been shown that T-lymphocytes and macrophages play a crucial role during pathogenesis in peripheral nerves of P0+/- mice. Both, T-lymphocytes and macrophages increase in number in the endoneurium and deletion of T-lymphocytes or deletion of a macrophage-directed cytokine ameliorates the disease. In this study the monocyte chemoattractant protein-1 (MCP-1) was identified as an early regulated cytokine before onset of disease is visible at the age of six months. MCP-1 mRNA and protein expression could be detected in femoral quadriceps and sciatic nerves of P0+/- mice already at the age of one month but not in cutaneous saphenous nerves which are never affected by the disease. MCP-1 was shown to be expressed by Schwann cells and to mediate the immigration of immune cells into peripheral nerves. Deletion of MCP-1 in P0+/- mice accomplished by crossbreeding P0 and MCP-1 deficient mice revealed a substantial reduction of immune cells in peripheral nerves of P0+/-/MCP-1+/- and P0+/-/MCP-1-/- mice at the age of six months. In twelve months old mice reduction of immune cells in peripheral nerves is accompanied by amelioration of demyelinating disease in P0+/-/MCP-1+/- and aggravation of demyelinating disease in lumbar ventral roots of P0+/ /MCP-1-/- mice in comparison to P0+/ /MCP 1+/+ mice. Furthermore, activation of the MEK1/2-ERK1/2 signalling cascade could be demonstrated to take place in Schwann cells of affected peripheral nerves of P0+/- mice overlapping temporarily and spatially with MCP-1 expression. An animal experiment using a MEK1/2-inhibitor in vivo, CI-1040, revealed that upon reduction of ERK1/2 phosphorylation MCP-1 mRNA expression is diminished suggesting that the activation of the MEK1/2-ERK1/2 signalling cascade is necessary for MCP-1 expression. Additionally, peripheral nerves of P0+/- mice showing reduced ERK1/2 phosphorylation and MCP-1 mRNA expression also show reduced numbers of macrophages in the endoneurium. This study shows a molecular link between a Schwann cell based mutation and immune cell function. Inhibition of the identified signalling cascade might be a putative target for therapeutic approaches. 2008 urn:nbn:de:bvb:20-opus-29189 Neurologische Klinik und Poliklinik