Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-6419 Dissertation Scherzer, Sönke Biophysikalische Analyse und Rekonstitution des schnellen ABA-Signaltransduktionsweges aus Arabidopsis thaliana In dieser Arbeit sollte zunächst die Frage geklärt werden, ob es sich bei SLAC1 um den S-typ Anionenkanal handelt, oder ob SLAC1 nur ein essentieller Bestandteil des Anionenkanals ist. Zur funktionellen Charakterisierung des per se inaktiven SLAC1 Proteins, wurde mit der Suche nach SLAC1-aktivierenden Interaktionspartnern begonnen. Zu diesem Zweck bediente man sich der Methode der bimolekularen Fluoreszenz Komplementation (BiFC) im heterologen Expressionssystem der Xenopus Oozyten. Da bereits die Abhängigkeit der Anionenströme in Schließzellen von De- und Phosphorylierungsereignissen bekannt war, galt Ca2+-abhängigen Kinasen der CPK Familie, ABA-aktivierten Kinasen der SnRK Familie und Phosphatasen des PP2C Typs eine besondere Aufmerksamkeit. Mitglieder dieser Familien wurden bereits mit der Regulation des Stomaschlusses in Verbindung gebracht. Bei diesen Experimenten zeigte sich, dass SnRK2.6 (OST1) und mehrere CPKs deutlich mit SLAC1 physikalisch interagierten. Als Folge dieser Interaktion in Oozyten konnten schließlich nach Koexpression von SLAC1 zusammen mit den interagierenden Kinasen typische S-Typ Anionenströme detektiert werden, wie man sie aus Patch-Clamp Experimenten an isolierten Schließzellprotoplasten kannte. Hierbei bewirkten die Kinasen OST1 und CPK23 die größte Anionenkanalaktivierung. Dieses Ergebnis wird durch die BIFC-Experimente gestützt, da OST1 und CPK23 die stärkste Interaktion zu SLAC1 zeigten. Die elektrophysiologische Charakterisierung der SLAC1-Ströme im heterologen Expressionssystem der Xenopus Oozyten in Kombination mit in vivo Patch-Clamp Untersuchungen wies SLAC1 eindeutig als den lange gesuchten S-Typ Anionenkanal in Arabidopsis Schließzellen aus. Somit ist die direkte S-Typ Anionenkanalaktivierung durch OST1 auf dem Kalzium- unabhängigen und durch CPKs auf dem Ca2+-abhängigen ABA-Signaltransduktionsweg gelungen. Bei der Spezifizierung der einzelnen Kalzium-Abhängigkeiten dieser Kinasen in Oozyten und in in vitro Kinase Assays konnten weiterhin unterschiedliche Affinitäten der CPKs zu Kalzium festgestellt werden. So vermittelten die schwach Kalzium-abhängigen CPK6 und CPK23 bereits ohne einen Anstieg der zytosolischen Kalziumkonzentratiom über das Ruheniveau hinaus schon die Anionenkanalaktivierung. Die stark Kalzium-abhängigen CPK3 und CPK21 hingegen, werden erst aktiv wenn die ABA vermittelte Signaltransduktion zu einem Anstieg der Kalziumkonzentration führt. Da somit die Kinasen OST1, CPK6 und CPK23 ohne dieses Kalziumsignal aktiv sind, benötigen diese einen übergeordneten Regulationsmechanismus. In den BIFC-Experimenten konnte eine deutliche Interaktion der Phosphatasen ABI1 und 2 zu den SLAC1 aktivierenden Kinasen beobachtet werden. Dass diese Interaktion zu einem Ausbleiben der Anionenkanalaktivierung führt, wurde in TEVC-Messungen gezeigt. Mit diesen Erkenntnissen um die ABA-Signaltransduktionskette in Schließzellen konnten in in vitro Kinase Experimenten ihre einzelnen Glieder zusammengesetzt und der ABA-vermittelte Stomaschluss nachvollzogen werden. In dieser Arbeit zeigte sich, dass, das unter Wasserstress-Bedingungen synthetisierte Phytohormon, ABA von Rezeptoren der RCAR/PYR/PYL-Familie percepiert wird. Anschließend bindet die Phosphatase ABI1 an den ABA-RCAR1 Komplex. In ihrer freien Form inhibiert die Phosphatase ABI1 die Kinasen OST1, CPK3, 6, 21 und CPK23 durch Dephosphorylierung. Nach Bindung von ABI1 an RCAR1 sind diese Kinasen von dem inhibierenden ABI1 entlassen. Die Kinasen OST1, CPK6 und CPK23 stellen ihre Aktivität durch Autophosphorylierung wieder her. Die stark Ca2+-abhängigen Kinasen CPK3 und 21 benötigt hierzu noch einen ABA induzierten Ca2+-Anstieg im Zytoplasma. Diese Kinasen phosphorylieren anschließend SLAC1 am N-Terminus. Diese Phosphorylierung bewirkt die Aktivierung von SLAC1 woraufhin Anionen aus der Schließzelle entlassen werden. Das Fehlen dieser negativen Ladungen führt zur Depolarisation der Membran woraufhin der auswärtsgleichrichtende Kaliumkanal GORK aktiviert und K+ aus der Schließzelle entlässt. Der Verlust an Osmolyten bewirkt einen osmotisch getriebenen Wasserausstrom und das Stoma schließt sich. 2012 urn:nbn:de:bvb:20-opus-76199 Julius-von-Sachs-Institut für Biowissenschaften