Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-21852 Wissenschaftlicher Artikel Masota, Nelson E.; Vogg, Gerd; Heller, Eberhard; Holzgrabe, Ulrike Comparison of extraction efficiency and selectivity between low-temperature pressurized microwave-assisted extraction and prolonged maceration Extraction is a key step in studying compounds from plants and other natural sources. The common use of high temperatures in pressurized microwave-assisted extraction (PMAE) makes it unsuitable for the extraction of compounds with low or unknown thermal stability. This study aimed at determining the suitability of low-temperature, short-time PMAE in attaining yields comparable to those of prolonged maceration at room temperature. Additionally, we explored the phytochemical differences of the extracts from both techniques. Maceration at room temperature for 24 hr and PMAE at 40-45°C and 10 bar for 30 min were carried out on 18 samples from 14 plant species at a solvent-to-feeds ratio of 10. The PMAE yields of 16 out of 18 samples were within the proportions of 91-139.2% as compared with the respective extracts from maceration. Varying numbers of nonmatching peaks were noted in MS chromatograms of five extract pairs, indicating selective extraction of some compounds. Low-temperature PMAE can attain reasonable extraction efficiency with the added value of sparing compounds of low thermal stability. The method can also enable the recovery of compounds distinct from those obtained by maceration. 2020 Archiv der Pharmazie 353 10 urn:nbn:de:bvb:20-opus-218529 10.1002/ardp.202000147 Institut für Pharmazie und Lebensmittelchemie OPUS4-3226 Wissenschaftlicher Artikel Quast, Helmut; Schmitt, Edeltraud; Schäfer, Peter; Heller, Eberhard; Aldenkortt, Sven Synthesis and Thermolysis of a Chiral, Non-Racemic Iminoaziridine The 2-halo imidoyl chlorides 7 are obtained from the amide 5 and the 2-halo amides 6 by the action of phosphorus pentachloride and thionyl chloride, respectively. Non-racemic (S)-6a is converted into 7a which is racemic, however. The reaction of Lawesson's reagent with 6a furnishes the diastereomeric 1,3.2-thiazaphospholidine derivatives 15. Treatment of (S)-6a (98% eel with methyl triflate affords 2-chloro imidate 8 (95% eel which reacts with methanamine in the presence of methanammonium chloride to yield the 2-chloro amidine (S)-9a (90% eel. The 2-halo imidoyl halides 7a and b react with methanamine to produce the 2-halo amidines 9a and b. - Strong bases, e.g. potassium tert-butoxide or sodium hydride in the presence of catalytic amounts of tertbutyl alcohol, eliminate hydrogen chloride or bromide from the 2-halo amidines 9a and band (S)-9a to yield mixtures of Recently, we demonstrated that the formation of the chiral non-racemic aziridinone (R)-2 from the a-chloro amide (5)-1 by base-promoted dehydrochlorination[2) as well as the nucleophilic cleavage of the N-C(3) bond of (R)_2[3,4) occur with inversion of configuration, thus excluding the intervention of achiral (acyclic) intermediates. In the temperature range of lOO-170°C, however, slow racemization accompanies the thermolysis of (R)-2 and indicates the existence of an achiral or a racemic transient, e. g. (M)-3 + (P)-3. Indeed, high-level quantum-chemical calculations reveal that an activation energy of (170 ± 25) kJmol- 1 is required for the unimolecular ring opening of the parent aziridinone which affords a species of high diradical character[41. Subsequently, the unstable N-phenylaziridinone invoked in the decomposition of the (5)-2-bromopropananilide anion was shown to react with tert-butylamine or dimethylformamide with inversion of configuration at C(3)[51. Thus, the stereochemical evidence in the series of 3-alkylaziridinones excludes achiral (acyclic) aziridinone isomers as intermediates at low tempera tures [6J. Similar stereochemical studies are still missing in the related series of iminoaziridines. Therefore, we report on the synthesis and thermolysis of the diastereomeric chiral racemic (E)- and (Z)-(4)[71 and non-racemic iminoaziridines (E,R)- and (Z,R)-4. Racemic Iminoaziridines (E)- and (Z)-4 Though a photochemical route to the iminoaziridines (E)- and (Z)-4 has been devised more recently, i. e. the phothe 2-iminoaziridines (E)- and (Z)-4, and (E,R)- and (Z.R)-4 (83% eel, respectively. The 1.3-elimination of hydrogen bromide from 9b is diastereoselective at -30 to -40°C [(E)-4:(Z)-4 = <10:>90). The diastereomers equilibrate at 36°C with (kEZ + k ZE) = (5.92 ± 0.08) . 10-5 S-I (K = kEZlkzE = 0.428 ± 0.013). - The thermolysis of (E)- and (Z)-4 in [D61benzene solution yields the imine 16 and methyl isocyanide (17). The decomposition follows the first-order rate law. The following Arrhenius and Eyring parameters are calculated from five rate constants obtained in the temperature range of 70-110°C: Ea = (115.2 ± 0.4) kJmol-t, IgA = (12.06 ± 0.28), AH* = (112.1 ± 0.4) kJmol- l , AS'" = (-23.9 ± 0.7) JK-I mol-I, AGj73K = 121 kJmol-1 . The enantiomeric excess of the surviving fraction of (E,R)- and (Z.R)-4 is unchanged after two half-lives at 80°C. 1994 urn:nbn:de:bvb:20-opus-38298 Institut für Pharmazie und Lebensmittelchemie OPUS4-3225 Wissenschaftlicher Artikel Heller, Eberhard; Herdeis, Claus Synthesis of 2S,5S- and 2R,5S-5-Hydroxypipecolic Acid via Amide-Methylenation of S-5-Hydroxy-2-piperidone with Dimethyltitanocene A route to 2S,5S-and 2R,5S-hydroxypipecolic acid is presented, starting with the enantiopure 5S-5-hydroxy-piperidone 7. The key step of this reaction sequence is the chemoselsctive methylenation of the amide carbonyl group of 8 with dimethyltitanocene 9 to 10. The transformation of the exocyclic enecarbamate double bond to the carboxylic acid group is best accomplished via hydroboration/oxidation to the alcohol 11a,b. Separation and oxidation of the dlastereomers 11a,b, to 148. and 14b, and hydrolysis furnishes the diastereomeric pipecolic acids 15a and 15b in enantiopure form. 1993 urn:nbn:de:bvb:20-opus-38288 Institut für Pharmazie und Lebensmittelchemie