Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-1094 Dissertation Weigand, Wolfgang Geometrische Struktur und Morphologie epitaktisch gewachsener ZnSe-Schichtsysteme Halbleiterbauelemente sind im täglichen Leben allgegenwärtig und haben in den letzten Jahrzehnten unseren Lebensstil vollkommen verändert.Während diemikro-elektronischen Bauelemente hauptsächlich auf Silizium-Technologie basieren, gewannen Anfang der 90-ziger Jahre Verbindungshalbleiter wie GaAs, GaN, CdHgTe oder ZnSe für opto-elektronische Bauelemente immer stärkere Bedeutung. Besonders der II-VI Halbleiter ZnSe war wegen seiner großen Bandlücke und seiner geringen Versetzungsdichte einer der größten Hoffnungsträger, blau emittierende Laserdioden zu realisieren. Wie sich später zeigte, weisen ZnSe-basierte blaue Laserdioden aber binnen kurzer Zeit eine ausgeprägte Degradation ihrer opto-elektronisch aktiven Schicht auf [Guha97]. Dies führte schließlich dazu, dass sich zur Produktion blau-grün emittierender Laserdioden das konkurrierende Halbleitermaterial GaN durchsetzte [Pearton99] und ZnSe in den Hintergrund gedrängt wurde. In jüngster Zeit aber erlebt das ZnSe Halbleitermaterial in spintronischen Bauelementen eine Renaissance [Fiederling99], und auch in Kombination mit Mg und Fe konnten interessante magnetische Eigenschaften nachgewiesen werden [Marangolo01,Marangolo02]. ZurHerstellung der oben erwähnten opto-elektronischen und spintronischen Schichtstrukturen wird hauptsächlich die Molekular-Strahl-Epitaxie (MBE) eingesetzt. Sie gewährleistet erstens eine geringe Defektdichte und einen hohen Reinheitsgrad der erzeugten Schichtstrukturen. Zweitens können die elektronischen Eigenschaften der so erzeugten Schichtstrukturen durchDotierung gezielt beeinflusstwerden. Für das Wachstum der ZnSe-basierten Schichtsysteme ist zum einen die genutzte Substratfläche entscheidend. Als mögliche Substratkristalle bieten sich Halbleitermaterialien wie GaAs und Germanium an, die gegenüber dem ZnSe-Kristall eine sehr kleine Gitterfehlanpassung aufweisen (< 0.3 %). Zum anderen nimmt die ZnSe Oberfläche eine wichtige Rolle ein, weil an ihr das Wachstum abläuft und ihre mikroskopischen Eigenschaften direkt das Wachstum beeinflussen. Die genauen Mechanismen dieses Wachstumsprozesses sind bis jetzt nur in Ansätzen verstanden (siehe z.B. [Pimpinelli99,Herman97]), weshalb die Wachstumsoptimierung meist auf empirischem Weg erfolgt. Aus diesem Grund besteht ein gesteigertes akademisches Interesse an der Aufklärung der mikroskopischen Eigenschaften der Halbleiteroberflächen. Für die Oberflächen von CdTe- und GaAs-Kristallen wurden diesbezüglich bereits zahlreicheUntersuchungen durchgeführt, die die geometrische und elektronische Struktur und dieMorphologie dieser Oberflächen analysieren.MitHilfe von experimentellen Methoden wie Rastertunnel-Mikroskopie (STM), Photoelektronen-Spektroskopie (PES, ARUPS) und verschiedenen Beugungsmethoden (SXRD,HRXRD und LEED) bzw. theoretischen Berechnungen (DFT) wurde das Verhalten dieser Oberflächen untersucht. Ihren Eigenschaften wird Modell-Charakter zugewiesen, der oft auf andere II-VI und III-V Halbleiteroberflächen angewendet wird. Überraschenderweise ist das Verhalten der ZnSe Oberfläche, obwohl sie so lange im Mittelpunkt der Forschung um den blauen Laser stand, weit weniger gut verstanden. Unter anderemexistieren für die geometrische Struktur der c(2×2)-rekonstruierten ZnSe(001)Wachstumsoberfläche zwei konkurrierende Strukturmodelle, die sich widersprechen. Ziel der nachfolgenden Abhandlung ist es, zuerst die geometrische Struktur und die Morphologie der verschieden rekonstruierten ZnSe(001) Oberflächen zu untersuchen und mit dem Verhalten anderer II-VI Oberflächen zu vergleichen. Dadurch soll festgestellt werden, welche Eigenschaften der II-VI Halbleiteroberflächen Modell-Charakter besitzen, also übertragbar auf andere II-VI Halbleiteroberflächen sind, und welche der Oberflächen-Eigenschaften materialspezifisch sind (siehe Tab. 5.1). Zweitens wird die geometrische Struktur und dieMorphologie der Te-passivierten Ge(001) Oberfläche untersucht. Diese Oberfläche ist wegen ihrer geringen Gitterfehlanpassung bzgl. des ZnSe Kristalls eine erfolgversprechende Substratoberfläche, um das ZnSe-Wachstum auch auf nicht-polaren Halbleiteroberflächen zu etablieren. Zur Untersuchung der geometrischen Struktur bzw. Morphologie der Halbleiteroberflächen wurden die zwei komplementären Methoden SXRD und SPA-LEED eingesetzt. Die oberflächenempfindliche Röntgenbeugung (SXRD) ermöglicht es, die geometrische Struktur, also den genauen atomaren Aufbau der Oberfläche, aufzuklären. Die hochauflösende niederenergetische Elektronenbeugung (SPA-LEED) hingegen liefert Informationen über die Morphologie, also die Gestalt der Oberfläche auf mesoskopischer Größenskala. Diese Untersuchungen werden durch hochauflösende klassische Röntgenbeugung (HRXRD), Rasterkraft-Mikroskopie (AFM), hochauflösender Photoelektronen-Spektroskopie (PES, ARUPS) und Massen-Spektroskopie (QMS) ergänzt. Die vorliegende Arbeit gliedert sich in folgende drei Teile: Zuerst wird in die SXRD und SPA-LEED Methoden eingeführt, mit denen hauptsächlich gearbeitet wurde (Kapitel 2). Anschließend werden die experimentellen Untersuchungen an der Te/Ge(001) Oberfläche und an den verschieden rekonstruierten ZnSe(001) Oberflächen vorgestellt (Kapitel 5 bis 8). Im dritten und letzten Teil werden schließlich die wichtigsten Ergebnisse und Schlussfolgerungen zusammengefasst (Kapitel 9). 2005 urn:nbn:de:bvb:20-opus-12955 Physikalisches Institut