Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-3966 Dissertation Blume, Constanze Cellular functions of VASP phosphorylations Members of the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family are important regulators of the actin cytoskeleton dynamics. VASP functions as well as its interactions with other proteins are regulated by phosphorylation at three sites - serine157 (S157), serine239 (S239), and threonine278 (T278) in humans. cAMP- and cGMP- dependent protein kinases phosphorylate S157 and S239, respectively. In contrast, the kinase responsible for T278 was as yet unknown and identified in the first part of this thesis. In a screen for T278 phosphorylating kinases using a phospho-specific antibody against phosphorylated T278 AMP-activated protein kinase (AMPK) was identified in endothelial cells. Mutants of AMPK with altered kinase-activity modulate T278-phosphorylation levels in cells. AMPK-driven T278-phosphorylation impaired stress fiber formation and changed cell morphology in living cells. AMPK is a fundamental sensor of cellular and whole body energy homeostasis. Zucker Diabetic Fatty (ZDF) rats, which are an animal model for type II diabetes mellitus, were used to analyze the impact of phosphorylated T278 in vivo. AMPK-activity and T278-phosphorylation were substantially reduced in arterial vessel walls of ZDF rats in comparison to control animals. These findings demonstrate that VASP is a new AMPK substrate, that VASP phosphorylation mediates the effects of metabolic regulation on actin cytoskeleton rearrangements, and that this signaling system becomes down-regulated in diabetic vessel disorders in rats. In the second part of this thesis, a functional analysis of differential VASP phosphorylations was performed. To systematically address VASP phosphorylation patterns, a set of VASP phosphomimetic mutants was cloned. These mutants enable the mimicking of defined phosphorylation patterns and the specific analysis of single kinase-mediated phosphorylations. VASP localization to the cell periphery was increased by S157- phosphorylation and modulated by phosphorylation at S239 and T278. Latter phosphorylations synergistically reduced actin polymerization. In contrast, S157- phosphorylation had no effect on actin-dynamics. Taken together, the results of the second part show that phosphorylation of VASP serves as a fine regulator of localization and actin polymerization activity. In summary, this study revealed the functions of VASP phosphorylations and established novel links between signaling pathways and actin cytoskeleton rearrangement. 2009 urn:nbn:de:bvb:20-opus-48321 Institut für Klinische Biochemie und Pathobiochemie