Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-132 Dissertation Loske, Claudia Metabolische Veränderungen und Zelltod in neuralen Zellen durch "Advanced Glycation Endproducts" Advanced Glycation Endproducts (AGEs) entstehen aus nicht-enzymatisch glykierten Proteinen. In einer Folge von Dehydratations-, Kondensations- und Oxidationsschritten entsteht ein heterogenes Gemisch aus farbigen, fluoreszierenden Verbindungen. AGE-modifizierte Proteine sind unlöslich und proteaseresistent, bei ihrer Bildung entstehen freie Radikale und andere reaktive Intermediate. Von der AGE-Bildung betroffen sind vor allem langlebige Proteine mit geringem Umsatz wie Kollagen und Kristallin aber auch pathologische Proteinablagerungen, z.B. in der Alzheimer´schen Demenz (AD). Die Akkumulation von AGEs spielt in der Pathogenese von Komplikationen des Diabetes und der Hämodialyse eine Rolle, für die AD wird eine Beteiligung von AGEs am Krankheitsverlauf diskutiert. Die Alzheimer´sche Demenz ist gekennzeichnet durch den histologischen Nachweis seniler Plaques und neurofibrillärer Bündel in Hirngewebe der Patienten. Auf Ebene des Stoffwechsels kommt es zu einer Verringerung des zerebralen Glukoseumsatzes, es finden sich Marker sowohl für eine Akutphasenreaktion als auch für oxidativen Stress. In dieser Arbeit wurde gezeigt, dass die AGE-Bildung in vitro die Aggregation von ßA4, dem Hauptbestandteil der senilen Plaques in der AD, beschleunigt. Der geschwindigkeits-bestimmende Schritt ist dabei die Glykierung des ßA4-Monomers. Durch Zugabe von Übergangsmetall-ionen kann die Vernetzung weiter beschleunigt werden. Dies deutet darauf hin, dass AGEs zur Plaquebildung in der AD beitragen, redox-aktive Eisenionen sind in der AD mit den Plaques assoziiert. Mit Hilfe von Metallchelatoren, Antioxidantien oder mit Substanzen, welche die zur Vernetzung notwendigen Aminogruppen abblocken, lässt sich die Aggregation von ßA4 verlangsamen oder verhindern. AGEs wirken zytotoxisch auf BHK 21 Fibroblasten und humane SH-SY5Y Neuroblastoma Zellen. Die Toxizität unterschiedlicher Modell-AGEs ist abhängig von verschiedenen Faktoren, u.a. von dem zur Herstellung verwendeten Protein und vom Zucker. Die LD50 der Modell-AGEs korreliert mit dem AGE-Gehalt und der Radikalproduktion der Präparationen in vitro. Die AGE-Toxizität ist hauptsächlich radikalvermittelt. Oxidativer Stress lässt sich in AGE-behandelten Zellen durch die Bildung intrazellulärer Lipidperoxidationsprodukte nachweisen. Auf Ebene der Signaltransduktion konnte die Aktivierung des Transkriptions-faktors NfkB als Zeichen der Stressabwehr nachgewiesen werden. Die Gabe von Antioxidantien vor oder gleichzeitig mit den AGEs verringerte den Zelltod. Auch durch das Blockieren des Rezeptors für AGEs (RAGE) mit spezifischen Antikörpern konnte die Zahl überlebender Zellen gesteigert werden. Durch AGEs ausgelöster Stress führt in Neuroblastoma Zellen bereits in Konzentrationen unterhalb der LD50 zu Störungen im Redoxstatus, es kommt zur Depletion von GSH und zu Verschiebungen im Verhältnis GSH/GSSG. Damit einher gehen Veränderungen im Energiestoffwechsel der Zelle, nach anfänglich erhöhter Glukoseaufnahme kommt es im weiteren Verlauf der Inkubation zu einer Verringerung der Aufnahme von Glukose aus dem Medium, gefolgt von einer Zunahme der Laktatausschüttung. Ausserdem wurde eine Depletion von ATP um bis zu 50 Prozent nachgewiesen. Antioxidantien können die Störungen im Metabolismus der Zellen verhindern oder abschwächen, die meisten der getesteten Substanzen konnten Redoxstatus und ATP-Gehalt der Zellen zu normalisieren. Obwohl sich in AGE-gestressten Zellkulturen durch Annexin-Fluorescein-Markierung ein geringfügig erhöhter Prozentsatz apoptotischer Zellen nachweisen ließ und AGEs auch die Freisetzung von Cytochrom c ins Zytoplasma induzieren, verläuft der durch AGEs ausgelöste Zelltod verläuft offenbar insgesamt nekrotisch. Sowohl durch Radikalproduktion als auch über rezeptorvermittelte Signalwege verursachen AGEs oxidativen Stress und induzieren Veränderungen im Metabolismus der Zelle. Dies führt u. a. dazu, dass für die antioxidativen Schutzmechanismen der Zelle nicht mehr genügend Energie zur Verfügung steht. AGE-Stress trägt damit in einer selbstverstärkenden Reaktionskaskade zur Neurodegeneration bei und kann so an der Pathogenese der AD beteiligt sein. Antioxidantien und auch AGE-Inhibitoren könnten einen interessanten Ansatz zur Entwicklung alternativer Therapien in der AD darstellen. 2000 urn:nbn:de:bvb:20-opus-1707 Theodor-Boveri-Institut für Biowissenschaften OPUS4-7165 Dissertation Zovko, Josip Die E3-Ubiquitinligase HectD1 reguliert die Stabilität des antiapoptotischen Bcl-2-Familienmitglieds A1 Die Bcl-2-Familienmitglieder A1 und sein humanes Homolog Bfl-1 gewährleisten das Überleben der Zelle. Gleichzeitig trägt eine Dysregulation der Expression von A1/ Bfl-1 zur Krebsentstehung bei. Die Stabilität von A1/ Bfl-1 wird durch deren Ubiquitinylierung sowie die anschließende proteosomale Degradation gesteuert. Mit Hilfe eines Yeast-Two-Hybrid-Screens wurde die E3-Ubiquitinligase HectD1 als potentieller Interaktionspartner von A1/ Bfl-1 identifiziert. Die Interaktion von A1 und HectD1 des Yeast-Two-Hybrid-Screens konnte in Säugerzellen bestätigt werden. Desweiteren konnte gezeigt werden, dass lediglich 87 Aminosäuren für eine Interaktion von HectD1 und A1 nötig sind. Da membrangebundenes HectD1 zu einer Translokation von zytosolischem A1 an die Zellmembran führt, kann man davon ausgehen, dass beide Proteine auch in vivo miteinander interagieren. Eine dominant negative HectD1-Mutante schließlich beeinflusst die Ubiqutinylierung von A1 und führt somit zu dessen Stabilisierung. Diese Daten legen nahe, dass HectD1 ein wichtiger negativer Regulator von A1/ Bfl-1 ist und dass HectD1 für die Regulierung der A1/ Bfl-1-Proteinmenge in (Krebs)zellen sehr wichtig ist. 2013 urn:nbn:de:bvb:20-opus-87922 Institut für Virologie und Immunbiologie OPUS4-12198 Dissertation Grosz, Magdalena Urszula Identification of phagosomal escape relevant factors in Staphylococcus aureus infection Staphylococcus aureus is a facultative Gram-positive human pathogen which can cause different severe infections. Staphylococci are phagocytosed by professional and non-professional phagocytes; they are strongly cytotoxic against eukaryotic cells and have been proposed to play a role in immune evasion by spreading within migrating phagocytes. This study investigated the post invasive events upon S. aureus infection. Strains which are able to escape the phagosome were identified and the responsible toxins were determined. Thereby innovative insights into host pathogen interaction were obtained. A novel class of small amphipathic peptides with strong surfactant-like properties, the phenol soluble modulins, particularly PSMα as well as the leukocidin LukAB, are involved in phagosomal escape of the clinical S. aureus strains LAC, MW2 and 6850 in non-professional and professional phagocytes. Whereas, PSMβ, δ-toxin, α-toxin, β-toxin or phosphatidyl inositol-dependent phospholipase C did not affect phagosomal escape. By blocking the bacterial DNA-dependent RNA polymerase with rifampicin phagosomal escape is determined to start approximately 2.5 hours post infection. Phagosomal escape further was required for intracellular replication of S. aureus. Strains which are not able to escape cannot replicate in the acidic vacuole, whereas, the host cytoplasm offers a rich milieu for bacterial replication. Additionally, phagosomal escape, with intracellular bacterial replication induces the subsequent host cell death. This could be confirmed by an infection assay including S. aureus knockout mutants in psmα or lukAB which were significantly less cytotoxic, compared with those infected with escape-positive wild type strains. Further, this study showed that phagosomal escape is not only mediated by bacterial toxins. Since, the phagocyte-specific cognate receptors for both escape relevant toxins, FPR2 (PSMα receptor) and CD11b (LukAB receptor) are produced in epithelial and endothelial cells only after infection with S. aureus in a calcium dependent fashion. The knockdown of both receptors using siRNA prevents S. aureus to escape the phagosome. Furthermore, blocking intracellular calcium release with the inositol trisphosphate receptor (IP3R) inhibitor 2-APB prohibits upregulation of fpr2 and cd11b and subsequently phagosomal escape of S. aureus. To conclude, the current study clarifies that phagosomal escape and host cell death are interplay of both, bacterial toxins and host cell factors. Staphylococcus aureus ist ein fakultativ Gram-positives Humanpathogen, dass verschiedene schwerwiegende Infektionen verursachen kann. Staphylokokken werden von professionellen und nicht-professionellen Phagozyten (Fresszellen) zu gleich aufgenommen. Desweitern sind sie stark zytotoxisch für eukaryotische Zellen. Außerdem wird vermutet, dass sie sich mittels migrierender Phagozyten dem angeborenen Immunsystem entziehen können. In dieser Studie werden die post-invasiven Ereignisse während einer Staphylokokken Infektion untersucht. Im Detail wurden Stämme identifiziert die aus den Phagosomen entkommen können und die dafür verantwortlichen Toxine. Im Zuge dessen wurden neue Erkenntnisse der Interaktion zwischen Bakterien und Wirtszellen gewonnen. Eine neue Klasse von kleinen amphiphatischen Peptiden mit starken grenzflächenaktiven Eigenschaften (Surfactant), die sogenannten Phenol soluble modulins (PSMs) im Besonderen PSMα sowie das Leukozidin LukAB, sind am phagosomalen Ausbruch der klinisch relevanten S. aureus Stämmen LAC, MW2 und 6850 in nicht professionellen und professionellen Phagozyten involviert. Hingegen, sind PSMβ, δ-toxin, α-toxin, β-toxin oder Phosphatidylinositol abhängige Phospholipase C nicht am phagosomalen Ausbruch beteiligt. Durch die Hemmung der bakteriellen DNA-abhängigen RNA Polymerase mit Rifampicin wurde der Zeitpunkt für den Ausbruch auf etwa 2,5 Stunden nach der Infektion eingegrenzt. Der phagosomale Ausbruch ist weiterhin für die intrazelluläre Replikation von S. aureus notwendig. Während Stämme, die nicht ausbrechen können in der angesäuerten Vakuole nicht replizieren können, bietet das Zytoplasma ein reichhaltiges Milieu für die Vermehrung. Zudem wird der Pathogen induzierte Zelltod erst nach dem phagosomalen Ausbruch und mit anschließender Vermehrung ermöglicht. Nachgewiesen wurde dies mittels psmα und lukAB defizienten Mutanten welche signifikant weniger zytotoxisch waren als der Wildtyp Stamm. Diese Studie zeigt darüber hinaus, dass der phagosomale Ausbruch nicht nur durch bakterielle Toxine vermittelt wird. Sondern, dass die Phagozyten-spezifischen Rezeptoren für beide relevanten Toxine, FPR2 (PSMα Rezeptor) und CD11b (LukAB Rezeptor), in Epithel- und Endothelzellen nach Infektion mit S. aureus calciumabhängig produziert werden und für den Ausbruch notwendig sind. Der knockdown beider Rezeptoren mittels siRNA verhindert den Ausbruch. Wird der intrazelluläre Calciumstrom mittels des Inositoltrisphosphat Rezeptor (IP3R) Inhibitor 2-APB blockiert können die Gene fpr2 und cd11b nicht hochreguliert werden und der Ausbruch wird ebenfalls verhindert. Folglich zeigt diese Studie, dass der phagosomale Ausbruch und Pathogen induzierte Zelltod sowohl durch bakterielle Toxine als auch Wirtsfaktoren vermittelt wird. 2015 urn:nbn:de:bvb:20-opus-121981 Theodor-Boveri-Institut für Biowissenschaften OPUS4-18899 Dissertation Stelzner, Kathrin Identification of factors involved in Staphylococcus aureus- induced host cell death Staphylococcus aureus is a Gram-positive commensal bacterium, that asymptomatically colonizes human skin and mucosal surfaces. Upon opportune conditions, such as immunodeficiency or breached barriers of the host, it can cause a plethora of infections ranging from local, superficial infections to life-threatening diseases. Despite being regarded as an extracellular pathogen, S. aureus can invade and survive within non-phagocytic and phagocytic cells. Eventually, the pathogen escapes from the host cell resulting in killing of the host cell, which is associated with tissue destruction and spread of infection. However, the exact molecular mechanisms underlying S. aureus-induced host cell death remain to be elucidated. In the present work, a genome-wide haploid genetic screen was performed to identify host cell genes crucial for S. aureus intracellular cytotoxicity. A mutant library of the haploid cell line HAP1 was infected with the pathogen and cells surviving the infection were selected. Twelve genes were identified, which were significantly enriched when compared to an infection with a non-cytotoxic S. aureus strain. Additionally, characteristics of regulated cell death pathways and the role of Ca2+ signaling in S. aureus-infected cells were investigated. Live cell imaging of Ca2+ reporter cell lines was used to analyze single cells. S. aureus-induced host cell death exhibited morphological features of apoptosis and activation of caspases was detected. Cellular H2O2 levels were elevated during S. aureus intracellular infection. Further, intracellular S. aureus provoked cytosolic Ca2+ overload in epithelial cells. This resulted from Ca2+ release from endoplasmic reticulum and Ca2+ influx via the plasma membrane and led to mitochondrial Ca2+ overload. The final step of S. aureus-induced cell death was plasma membrane permeabilization, a typical feature of necrotic cell death. In order to identify bacterial virulence factors implicated in S. aureus-induced host cell killing, the cytotoxicity of selected mutants was investigated. Intracellular S. aureus employs the bacterial cysteine protease staphopain A to activate an apoptosis-like cell death characterized by cell contraction and membrane bleb formation. Phagosomal escape represents a prerequisite staphopain A-induced cell death, whereas bacterial intracellular replication is dispensable. Moreover, staphopain A contributed to efficient colonization of the lung in a murine pneumonia model. In conclusion, this work identified at least two independent cell death pathways activated by intracellular S. aureus. While initially staphopain A mediates S. aureus-induced host cell killing, cytosolic Ca2+-overload follows later and leads to the final demise of the host cell. 2020 urn:nbn:de:bvb:20-opus-188991 10.25972/OPUS-18899 Theodor-Boveri-Institut für Biowissenschaften