Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-2360 Dissertation Blenk, Steffen Bioinformatical analysis of B-cell lymphomas Background: The frequency of the most observed cancer, Non Hodgkin Lymphoma (NHL), is further rising. Diffuse large B-cell lymphoma (DLBCL) is the most common of the NHLs. There are two subgroups of DLBCL with different gene expression patterns: ABC ("Activated B-like DLBCL") and GCB ("Germinal Center B-like DLBCL"). Without therapy the patients often die within a few months, the ABC type exhibits the more aggressive behaviour. A further B-cell lymphoma is the Mantle cell lymphoma (MCL). It is rare and shows very poor prognosis. There is no cure yet. Methods: In this project these B-cell lymphomas were examined with methods from bioinformatics, to find new characteristics or undiscovered events on the molecular level. This would improve understanding and therapy of lymphomas. For this purpose we used survival, gene expression and comparative genomic hybridization (CGH) data. In some clinical studies, you get large data sets, from which one can reveal yet unknown trends. Results (MCL): The published proliferation signature correlates directly with survival. Exploratory analyses of gene expression and CGH data of MCL samples (n=71) revealed a valid grouping according to the median of the proliferation signature values. The second axis of correspondence analysis distinguishes between good and bad prognosis. Statistical testing (moderate t-test, Wilcoxon rank-sum test) showed differences in the cell cycle and delivered a network of kinases, which are responsible for the difference between good and bad prognosis. A set of seven genes (CENPE, CDC20, HPRT1, CDC2, BIRC5, ASPM, IGF2BP3) predicted, similarly well, survival patterns as proliferation signature with 20 genes. Furthermore, some bands could be associated with prognosis in the explorative analysis (chromosome 9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34). Results (DLBCL): New normalization of gene expression data of DLBCL patients revealed better separation of risk groups by the 2002 published signature based predictor. We could achieve, similarly well, a separation with six genes. Exploratory analysis of gene expression data could confirm the subgroups ABC and GCB. We recognized a clear difference in early and late cell cycle stages of cell cycle genes, which can separate ABC and GCB. Classical lymphoma and best separating genes form a network, which can classify and explain the ABC and GCB groups. Together with gene sets which identify ABC and GCB we get a network, which can classify and explain the ABC and GCB groups (ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5; Altogether these findings are useful for diagnosis, prognosis and therapy (cytostatic drugs). 2007 urn:nbn:de:bvb:20-opus-27421 Theodor-Boveri-Institut für Biowissenschaften