Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-12655 Dissertation Schömig, Herbert Richard Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. 2004 urn:nbn:de:bvb:20-opus-126558 Physikalisches Institut OPUS4-1291 Dissertation Schömig, Herbert Richard Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. 2004 urn:nbn:de:bvb:20-opus-15188 Physikalisches Institut