Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-4240 Dissertation Hacker, Christian Beteiligung des Major Vault Proteins an der Kernporenkomplexbildung In die Kernmembran von Eukaryoten sind Kernporenkomplexe eingelagert. Diese stellen die einzige Verbindung zwischen dem Nukleo- und Zytoplasma dar und vermitteln den gerichteten Transport von Proteinen und Ribonukleoproteinpartikeln über die Kernhülle. Durch vorangehende Versuche unserer Arbeitsgruppe konnte gezeigt werden, dass es experimentell möglich ist, die Bildung einer kontinuierlichen Doppelmembran von der Insertion der Kernporenkomplexe zu trennen (Ewald et al., 1997). Dabei spielen verschiedene im Extrakt enthaltene Membranfraktionen eine Rolle. Erst kürzlich wurden in unserer Arbeitsgruppe zwei unterschiedliche Membranfraktionen aus Xenopus Extrakt isoliert, die aufgrund ihrer Dichte als 40% und 30% Membranfraktion benannt wurden. Massenspektrometrische Untersuchungen zeigten, dass sich in der 30% Membranfraktion, welche für die Kernporenkomplexbildung verantwortlich zu sein scheint, das Major Vault Protein (MVP) befindet. MVP ist Hauptbestandteil der Vault-Komplexe, großer tonnenförmiger Ribonukleoproteinpartikel, denen bislang eine Vielzahl von zellulären Funktionen zugeordnet wurden, die meisten davon jedoch noch stark debattiert. Vaults könnten womöglich eine Rolle als Transporter über die Kernporenkomplexe spielen und wurden schon mehrfach mit dem Aufbau einer multiplen Arzneimittelresistenz in Verbindung gebracht. Die Beteiligung von MVP bei der Bildung der Kernporenkomplexe ist eine neue zelluläre Funktion und sollte deshalb in dieser Arbeit näher untersucht werden. In dieser Arbeit wurden zunächst die 40% und 30% Membranfraktionen auf ihr unterschiedliches Verhalten bei der Bildung der Kernhülle separat und in Kombination genauer untersucht. Dabei zeigte sich, dass die 40% Membranfraktion an Chromatin bindet und eine kontinuierliche Doppelmembran aufbaut. Die 30% Membranfraktion konnte alleine nicht an Chromatin binden, induzierte aber in der durch die 40% Membranfraktion gebildeten Doppelmembran den Aufbau von Kernporenkomplexen. Durch Immunfluoreszenzaufnahmen und ultrastrukturelle Untersuchungen wurde belegt, dass das an der 30% Membranfraktion assoziierte MVP für die Bildung von Kernporenkomplexen verantwortlich war. Ferner konnten wir zeigen, dass sowohl MVP als auch Vault-Partikel die de novo Insertion von Kernporenkomplexen in kontinuierliche Doppelmembranen induzieren konnten. Die molekularen Mechanismen der Kernporenkomplexbildung durch MVP wurden mit Hilfe von artifiziellen Lipidmembranen analysiert. Anhand von unilamellaren Liposomen und elektronenmikroskopischen Aufnahmen konnte gezeigt werden, dass MVP die Lipidstruktur beeinflussen und perforieren kann. Zudem löste MVP die Bildung von Poren in schwarzen Lipidmembranen aus und führte zur Messung von Strömen durch Einzelkanalmessungen über die entstandenen Poren. Um die bei dem Prozess der Kernporenkomplexbildung beteiligten Bindungspartner von MVP zu identifizieren, wurden mehrere Protein-Protein-Bindungsstudien durchgeführt. Unter den ermittelten MVP-Bindungspartnern ließen sich keine Nukleoporine mit dem Sequenzmotiv FXFG identifizieren, es ist jedoch nicht auszuschließen, dass MVP bei der Bildung der Kernporenkomplexe mit anderen Nukleoporinen interagiert. Da eine frühere Arbeit die Bedeutung von Mikrotubuli bei der Bildung der Kernporenkomplexe aufzeigte (Ewald et al., 2001), wurden in dieser Arbeit die Interaktionen der isolierten 40% und 30% Membranfraktionen und von MVP mit dem Mikrotubulinetzwerk näher analysiert. Dabei zeigte sich, dass nur die 30% Membranfraktion mit Mikrotubuli interagierte und eine Inhibition der Mikrotubulipolymerisation durch Colchizin den Einbau von Kernporenkomplexen verhinderte. Im Gegensatz dazu interagierten die 40% Membranvesikel nicht mit Mikrotubuli und daher hat eine Colchizin-induzierte Inhibition der Mikrotubulipolymerisation keinen Effekt auf den Aufbau einer kontinuierlichen Doppelmembran. Durch immunfluoreszenzmikroskopische Untersuchungen konnte zudem gezeigt werden, dass die Lokalisation von MVP an der Kernhülle ebenfalls Abhängig von Mikrotubuli ist. Um zu demonstrieren, dass die MVP-induzierte Kernporenkomplexbildung im zellfreien System abhängig vom Transport von MVP zur Kernhülle ist, wurde die Zugabe von MVP zu porenlosen Kernen nach einer Colchizin-Behandlung analysiert. Hierbei konnte belegt werden, dass MVP Mikrotubuli auch benötigt, um die Bildung von Kernporenkomplexen in der Kernmembran zu initiieren. Da Mikrotubulifilamente im zellfreien System mit ihren Plus-Enden gegen die Chromatinoberfläche gerichtet sind, sollten für den gerichteten Transport zum Chromatin Motorproteine der Kinesin-Familie eine Rolle spielen. Durch die Inhibition von Mklp2, einem mitotischen Kinesin, konnte der Aufbau der Kernporenkomplexe durch MVP in porenlosen Kernen blockiert werden. 2010 urn:nbn:de:bvb:20-opus-51279 Theodor-Boveri-Institut für Biowissenschaften