Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-31936 Wissenschaftlicher Artikel Paul, Mila M.; Mieden, Hannah J.; Lefering, Rolf; Kupczyk, Eva K.; Jordan, Martin C.; Gilbert, Fabian; Meffert, Rainer H.; Sirén, Anna-Leena; Hoelscher-Doht, Stefanie Impact of a femoral fracture on outcome after traumatic brain injury — a matched-pair analysis of the TraumaRegister DGU\(^®\) Traumatic brain injury (TBI) is the leading cause of death and disability in polytrauma and is often accompanied by concomitant injuries. We conducted a retrospective matched-pair analysis of data from a 10-year period from the multicenter database TraumaRegister DGU\(^®\) to analyze the impact of a concomitant femoral fracture on the outcome of TBI patients. A total of 4508 patients with moderate to critical TBI were included and matched by severity of TBI, American Society of Anesthesiologists (ASA) risk classification, initial Glasgow Coma Scale (GCS), age, and sex. Patients who suffered combined TBI and femoral fracture showed increased mortality and worse outcome at the time of discharge, a higher chance of multi-organ failure, and a rate of neurosurgical intervention. Especially those with moderate TBI showed enhanced in-hospital mortality when presenting with a concomitant femoral fracture (p = 0.037). The choice of fracture treatment (damage control orthopedics vs. early total care) did not impact mortality. In summary, patients with combined TBI and femoral fracture have higher mortality, more in-hospital complications, an increased need for neurosurgical intervention, and inferior outcome compared to patients with TBI solely. More investigations are needed to decipher the pathophysiological consequences of a long-bone fracture on the outcome after TBI. 2023 Journal of Clinical Medicine 12 11 urn:nbn:de:bvb:20-opus-319363 10.3390/jcm12113802 Neurochirurgische Klinik und Poliklinik OPUS4-30490 Wissenschaftlicher Artikel Mrestani, Achmed; Lichter, Katharina; Sirén, Anna-Leena; Heckmann, Manfred; Paul, Mila M.; Pauli, Martin Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations. 2023 International Journal of Molecular Sciences 24 3 urn:nbn:de:bvb:20-opus-304904 10.3390/ijms24032128 Neurochirurgische Klinik und Poliklinik OPUS4-28822 Wissenschaftlicher Artikel vom Dahl, Christian; Müller, Christoph Emanuel; Berisha, Xhevat; Nagel, Georg; Zimmer, Thomas Coupling the cardiac voltage-gated sodium channel to channelrhodopsin-2 generates novel optical switches for action potential studies Voltage-gated sodium (Na\(^+\)) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na\(^+\) influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na\(^+\) channel (Na\(_v\)1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Na\(_v\)1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K\(^+\) channels on the AP shape, we co-expressed either K\(_v\)1.2 or hERG with one of the Na\(_v\)1.5-ChR2 fusions. As expected, both delayed rectifier K\(^+\) channels shortened AP duration significantly. K\(_v\)1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na\(^+\) current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na\(^+\) channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering. 2022 Membranes 12 10 urn:nbn:de:bvb:20-opus-288228 10.3390/membranes12100907 Physiologisches Institut OPUS4-28495 Wissenschaftlicher Artikel Stetter, Christian; Lopez-Caperuchipi, Simon; Hopp-Krämer, Sarah; Bieber, Michael; Kleinschnitz, Christoph; Sirén, Anna-Leena; Albert-Weißenberger, Christiane Amelioration of cognitive and behavioral deficits after traumatic brain injury in coagulation factor XII deficient mice Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII\(^{−/−}\) mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII\(^{−/−}\) mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII\(^{−/−}\) mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII\(^{−/−}\) mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII\(^{−/−}\) mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery. 2021 International Journal of Molecular Sciences 22 9 urn:nbn:de:bvb:20-opus-284959 10.3390/ijms22094855 Neurochirurgische Klinik und Poliklinik OPUS4-28578 Wissenschaftlicher Artikel Korkmaz, Yüksel; Puladi, Behrus; Galler, Kerstin; Kämmerer, Peer W.; Schröder, Agnes; Gölz, Lina; Sparwasser, Tim; Bloch, Wilhelm; Friebe, Andreas; Deschner, James Inflammation in the human periodontium induces downregulation of the α\(_1\)- and β\(_1\)-subunits of the sGC in cementoclasts Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α\(_1\)- and β\(_1\)-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α\(_1\)- and β\(_1\)-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α\(_1\)- and β\(_1\)-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption. 2021 International Journal of Molecular Sciences 22 2 urn:nbn:de:bvb:20-opus-285783 10.3390/ijms22020539 Physiologisches Institut OPUS4-25476 Wissenschaftlicher Artikel Tian, Yuehui; Yang, Shang; Nagel, Georg; Gao, Shiqiang Characterization and modification of light-sensitive phosphodiesterases from choanoflagellates Enzyme rhodopsins, including cyclase opsins (Cyclops) and rhodopsin phosphodiesterases (RhoPDEs), were recently discovered in fungi, algae and protists. In contrast to the well-developed light-gated guanylyl/adenylyl cyclases as optogenetic tools, ideal light-regulated phosphodiesterases are still in demand. Here, we investigated and engineered the RhoPDEs from Salpingoeca rosetta, Choanoeca flexa and three other protists. All the RhoPDEs (fused with a cytosolic N-terminal YFP tag) can be expressed in Xenopus oocytes, except the AsRhoPDE that lacks the retinal-binding lysine residue in the last (8th) transmembrane helix. An N296K mutation of YFP::AsRhoPDE enabled its expression in oocytes, but this mutant still has no cGMP hydrolysis activity. Among the RhoPDEs tested, SrRhoPDE, CfRhoPDE1, 4 and MrRhoPDE exhibited light-enhanced cGMP hydrolysis activity. Engineering SrRhoPDE, we obtained two single point mutants, L623F and E657Q, in the C-terminal catalytic domain, which showed ~40 times decreased cGMP hydrolysis activity without affecting the light activation ratio. The molecular characterization and modification will aid in developing ideal light-regulated phosphodiesterase tools in the future. 2022 Biomolecules 12 1 urn:nbn:de:bvb:20-opus-254769 10.3390/biom12010088 Physiologisches Institut OPUS4-30091 Wissenschaftlicher Artikel Lichter, Katharina; Paul, Mila Marie; Pauli, Martin; Schoch, Susanne; Kollmannsberger, Philip; Stigloher, Christian; Heckmann, Manfred; Sirén, Anna-Leena Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{−/−}\) and wild-type mice. In RIM1α\(^{−/−}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0-2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{−/−}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs. 2022 Cell Reports 40 12 urn:nbn:de:bvb:20-opus-300913 10.1016/j.celrep.2022.111382 Neurochirurgische Klinik und Poliklinik OPUS4-30041 Wissenschaftlicher Artikel Scherzer, Sönke; Huang, Shouguang; Iosip, Anda; Kreuzer, Ines; Yokawa, Ken; Al-Rasheid, Khaled A. S.; Heckmann, Manfred; Hedrich, Rainer Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca\(^{2+}\) wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K\(^{+}\) channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap's prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca\(^{2+}\) transients, we, in mature trigger hairs firing fast Ca\(^{2+}\) signals and APs, found OSCA1.7 and GLR3.6 type Ca\(^{2+}\) channels and ACA2/10 Ca\(^{2+}\) pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca\(^{2+}\) and electrical event. Given that anesthetics affect K\(^+\) channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca\(^{2+}\) and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca\(^{2+}\) activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ. 2022 Scientific reports 12 urn:nbn:de:bvb:20-opus-300411 10.1038/s41598-022-06915-z Physiologisches Institut OPUS4-29944 Wissenschaftlicher Artikel Dannhäuser, Sven; Mrestani, Achmed; Gundelach, Florian; Pauli, Martin; Komma, Fabian; Kollmannsberger, Philip; Sauer, Markus; Heckmann, Manfred; Paul, Mila M. Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation Introduction Neurotransmitter release at presynaptic active zones (AZs) requires concerted protein interactions within a dense 3D nano-hemisphere. Among the complex protein meshwork the (M)unc-13 family member Unc-13 of Drosophila melanogaster is essential for docking of synaptic vesicles and transmitter release. Methods We employ minos-mediated integration cassette (MiMIC)-based gene editing using GFSTF (EGFP-FlAsH-StrepII-TEV-3xFlag) to endogenously tag all annotated Drosophila Unc-13 isoforms enabling visualization of endogenous Unc-13 expression within the central and peripheral nervous system. Results and discussion Electrophysiological characterization using two-electrode voltage clamp (TEVC) reveals that evoked and spontaneous synaptic transmission remain unaffected in unc-13\(^{GFSTF}\) 3rd instar larvae and acute presynaptic homeostatic potentiation (PHP) can be induced at control levels. Furthermore, multi-color structured-illumination shows precise co-localization of Unc-13\(^{GFSTF}\), Bruchpilot, and GluRIIA-receptor subunits within the synaptic mesoscale. Localization microscopy in combination with HDBSCAN algorithms detect Unc-13\(^{GFSTF}\) subclusters that move toward the AZ center during PHP with unaltered Unc-13\(^{GFSTF}\) protein levels. 2022 Frontiers in Cellular Neuroscience 16 urn:nbn:de:bvb:20-opus-299440 10.3389/fncel.2022.1074304 Physiologisches Institut OPUS4-27468 Wissenschaftlicher Artikel Heckmann, Manfred; Pauli, Martin Visualizing presynaptic active zones and synaptic vesicles The presynaptic active zone (AZ) of chemical synapses is a highly dynamic compartment where synaptic vesicle fusion and neurotransmitter release take place. During evolution the AZ was optimized for speed, accuracy, and reliability of chemical synaptic transmission in combination with miniaturization and plasticity. Single-molecule localization microscopy (SMLM) offers nanometer spatial resolution as well as information about copy number, localization, and orientation of proteins of interest in AZs. This type of imaging allows quantifications of activity dependent AZ reorganizations, e.g., in the context of presynaptic homeostatic potentiation. In combination with high-pressure freezing and optogenetic or electrical stimulation AZs can be imaged with millisecond temporal resolution during synaptic activity. Therefore SMLM allows the determination of key parameters in the complex spatial environment of AZs, necessary for next generation simulations of chemical synapses with realistic protein arrangements. 2022 Frontiers in Synaptic Neuroscience 14 urn:nbn:de:bvb:20-opus-274687 10.3389/fnsyn.2022.901341 Physiologisches Institut OPUS4-30090 Wissenschaftlicher Artikel Graf, Jürgen; Rahmati, Vahid; Majoros, Myrtill; Witte, Otto W.; Geis, Christian; Kiebel, Stefan J.; Holthoff, Knut; Kirmse, Knut Network instability dynamics drive a transient bursting period in the developing hippocampus in vivo Spontaneous correlated activity is a universal hallmark of immature neural circuits. However, the cellular dynamics and intrinsic mechanisms underlying network burstiness in the intact developing brain are largely unknown. Here, we use two-photon Ca\(^{2+}\) imaging to comprehensively map the developmental trajectories of spontaneous network activity in the hippocampal area CA1 of mice in vivo. We unexpectedly find that network burstiness peaks after the developmental emergence of effective synaptic inhibition in the second postnatal week. We demonstrate that the enhanced network burstiness reflects an increased functional coupling of individual neurons to local population activity. However, pairwise neuronal correlations are low, and network bursts (NBs) recruit CA1 pyramidal cells in a virtually random manner. Using a dynamic systems modeling approach, we reconcile these experimental findings and identify network bi-stability as a potential regime underlying network burstiness at this age. Our analyses reveal an important role of synaptic input characteristics and network instability dynamics for NB generation. Collectively, our data suggest a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior to the onset of environmental exploration. 2022 eLife 11 urn:nbn:de:bvb:20-opus-300906 10.7554/eLife.82756 Physiologisches Institut OPUS4-26851 Wissenschaftlicher Artikel Jansch, Charline; Ziegler, Georg C.; Forero, Andrea; Gredy, Sina; Wäldchen, Sina; Vitale, Maria Rosaria; Svirin, Evgeniy; Zöller, Johanna E. M.; Waider, Jonas; Günther, Katharina; Edenhofer, Frank; Sauer, Markus; Wischmeyer, Erhard; Lesch, Klaus-Peter Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders. 2021 225-241 Journal of Neural Transmission 128 2 urn:nbn:de:bvb:20-opus-268519 10.1007/s00702-021-02303-5 Physiologisches Institut OPUS4-26767 Wissenschaftlicher Artikel Kirmse, Knut Non-linear GABA\(_{A}\) receptors promote synaptic inhibition in developing neurons No abstract available. 2022 181–183 Pflügers Archiv - European Journal of Physiology 474 2 urn:nbn:de:bvb:20-opus-267674 10.1007/s00424-021-02652-w Physiologisches Institut OPUS4-26549 Wissenschaftlicher Artikel Mrestani, Achmed; Pauli, Martin; Kollmannsberger, Philip; Repp, Felix; Kittel, Robert J.; Eilers, Jens; Doose, Sören; Sauer, Markus; Sirén, Anna-Leena; Heckmann, Manfred; Paul, Mila M. Active zone compaction correlates with presynaptic homeostatic potentiation Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier. 2021 109770 Cell Reports 37 1 urn:nbn:de:bvb:20-opus-265497 10.1016/j.celrep.2021.109770 Neurochirurgische Klinik und Poliklinik OPUS4-25983 Wissenschaftlicher Artikel Pauli, Martin; Paul, Mila M.; Proppert, Sven; Mrestani, Achmed; Sharifi, Marzieh; Repp, Felix; Kürzinger, Lydia; Kollmannsberger, Philip; Sauer, Markus; Heckmann, Manfred; Sirén, Anna-Leena Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution. 2021 407 Communications Biology 4 urn:nbn:de:bvb:20-opus-259830 10.1038/s42003-021-01939-z Neurochirurgische Klinik und Poliklinik OPUS4-24924 Wissenschaftlicher Artikel Panzer, Sabine; Zhang, Chong; Konte, Tilen; Bräuer, Celine; Diemar, Anne; Yogendran, Parathy; Yu-Strzelczyk, Jing; Nagel, Georg; Gao, Shiqiang; Terpitz, Ulrich Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications. 2021 Frontiers in Molecular Biosciences 8 urn:nbn:de:bvb:20-opus-249248 10.3389/fmolb.2021.750528 Physiologisches Institut OPUS4-24852 Wissenschaftlicher Artikel Hepbasli, Denis; Gredy, Sina; Ullrich, Melanie; Reigl, Amelie; Abeßer, Marco; Raabe, Thomas; Schuh, Kai Genotype- and Age-Dependent Differences in Ultrasound Vocalizations of SPRED2 Mutant Mice Revealed by Machine Deep Learning Vocalization is an important part of social communication, not only for humans but also for mice. Here, we show in a mouse model that functional deficiency of Sprouty-related EVH1 domain-containing 2 (SPRED2), a protein ubiquitously expressed in the brain, causes differences in social ultrasound vocalizations (USVs), using an uncomplicated and reliable experimental setting of a short meeting of two individuals. SPRED2 mutant mice show an OCD-like behaviour, accompanied by an increased release of stress hormones from the hypothalamic-pituitary-adrenal axis, both factors probably influencing USV usage. To determine genotype-related differences in USV usage, we analyzed call rate, subtype profile, and acoustic parameters (i.e., duration, bandwidth, and mean peak frequency) in young and old SPRED2-KO mice. We recorded USVs of interacting male and female mice, and analyzed the calls with the deep-learning DeepSqueak software, which was trained to recognize and categorize the emitted USVs. Our findings provide the first classification of SPRED2-KO vs. wild-type mouse USVs using neural networks and reveal significant differences in their development and use of calls. Our results show, first, that simple experimental settings in combination with deep learning are successful at identifying genotype-dependent USV usage and, second, that SPRED2 deficiency negatively affects the vocalization usage and social communication of mice. 2021 Brain Sciences 11 10 urn:nbn:de:bvb:20-opus-248525 10.3390/brainsci11101365 Physiologisches Institut OPUS4-24273 Wissenschaftlicher Artikel Popp, Sandy; Schmitt-Böhrer, Angelika; Langer, Simon; Hofmann, Ulrich; Hommers, Leif; Schuh, Kai; Frantz, Stefan; Lesch, Klaus-Peter; Frey, Anna 5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally naïve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (−/−) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT−/− mice with infarct sizes >30% experienced 100% mortality, while 50% of 5-HTT+/− and 37% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30%) 5-HTT−/− mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT−/− mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice. 2021 Journal of Clinical Medicine 10 14 urn:nbn:de:bvb:20-opus-242739 10.3390/jcm10143104 Physiologisches Institut OPUS4-23661 Wissenschaftlicher Artikel Zhou, Yang; Ding, Meiqi; Duan, Xiaodong; Konrad, Kai R.; Nagel, Georg; Gao, Shiqiang Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light. 2021 Membranes 11 4 urn:nbn:de:bvb:20-opus-236617 10.3390/membranes11040287 Physiologisches Institut OPUS4-23506 Wissenschaftlicher Artikel Jessen, Christina; Kreß, Julia K. C.; Baluapuri, Apoorva; Hufnagel, Anita; Schmitz, Werner; Kneitz, Susanne; Roth, Sabine; Marquardt, André; Appenzeller, Silke; Ade, Casten P.; Glutsch, Valerie; Wobser, Marion; Friedmann-Angeli, José Pedro; Mosteo, Laura; Goding, Colin R.; Schilling, Bastian; Geissinger, Eva; Wolf, Elmar; Meierjohann, Svenja The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H\(_2\)O\(_2\) or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma. 2020 6841–6855 Oncogene 39 urn:nbn:de:bvb:20-opus-235064 10.1038/s41388-020-01477-8 Physiologisches Institut OPUS4-23620 Wissenschaftlicher Artikel Tian, Yuehui; Yang, Shang; Gao, Shiqiang Advances, perspectives and potential engineering strategies of light-gated phosphodiesterases for optogenetic applications The second messengers, cyclic adenosine 3′-5′-monophosphate (cAMP) and cyclic guanosine 3′-5′-monophosphate (cGMP), play important roles in many animal cells by regulating intracellular signaling pathways and modulating cell physiology. Environmental cues like temperature, light, and chemical compounds can stimulate cell surface receptors and trigger the generation of second messengers and the following regulations. The spread of cAMP and cGMP is further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular microdomain signaling. However, localized intracellular cAMP and cGMP signaling requires further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities for spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin phosphodiesterase genes from protists established a new and direct biological connection between light and PDEs. Light-regulated PDEs are under development, and of demand to complete the toolkit for cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and cons of artificial and natural light-regulated PDEs, and discuss potential new strategies of developing light-gated PDEs for optogenetic manipulation. 2020 International Journal of Molecular Sciences 21 20 urn:nbn:de:bvb:20-opus-236203 10.3390/ijms21207544 Physiologisches Institut OPUS4-23605 Wissenschaftlicher Artikel Capetian, Philipp; Müller, Lorenz; Volkmann, Jens; Heckmann, Manfred; Ergün, Süleyman; Wagner, Nicole Visualizing the synaptic and cellular ultrastructure in neurons differentiated from human induced neural stem cells - an optimized protocol The size of the synaptic subcomponents falls below the limits of visible light microscopy. Despite new developments in advanced microscopy techniques, the resolution of transmission electron microscopy (TEM) remains unsurpassed. The requirements of tissue preservation are very high, and human post mortem material often does not offer adequate quality. However, new reprogramming techniques that generate human neurons in vitro provide samples that can easily fulfill these requirements. The objective of this study was to identify the culture technique with the best ultrastructural preservation in combination with the best embedding and contrasting technique for visualizing neuronal elements. Two induced neural stem cell lines derived from healthy control subjects underwent differentiation either adherent on glass coverslips, embedded in a droplet of highly concentrated Matrigel, or as a compact neurosphere. Afterward, they were fixed using a combination of glutaraldehyde (GA) and paraformaldehyde (PFA) followed by three approaches (standard stain, Ruthenium red stain, high contrast en-bloc stain) using different combinations of membrane enhancing and contrasting steps before ultrathin sectioning and imaging by TEM. The compact free-floating neurospheres exhibited the best ultrastructural preservation. High-contrast en-bloc stain offered particularly sharp staining of membrane structures and the highest quality visualization of neuronal structures. In conclusion, compact neurospheres growing under free-floating conditions in combination with a high contrast en-bloc staining protocol, offer the optimal preservation and contrast with a particular focus on visualizing membrane structures as required for analyzing synaptic structures. 2020 International Journal of Molecular Sciences 21 5 urn:nbn:de:bvb:20-opus-236053 10.3390/ijms21051708 Institut für Anatomie und Zellbiologie OPUS4-17853 Wissenschaftlicher Artikel Kirschmer, Nadine; Bandleon, Sandra; von Ehrlich-Treuenstätt, Viktor; Hartmann, Sonja; Schaaf, Alice; Lamprecht, Anna-Karina; Miranda-Laferte, Erick; Langsenlehner, Tanja; Ritter, Oliver; Eder, Petra TRPC4α and TRPC4β Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation The Transient Receptor Potential Channel Subunit 4 (TRPC4) has been considered as a crucial Ca\(^{2+}\) component in cardiomyocytes promoting structural and functional remodeling in the course of pathological cardiac hypertrophy. TRPC4 assembles as homo or hetero-tetramer in the plasma membrane, allowing a non-selective Na\(^{+}\) and Ca\(^{2+}\) influx. Gαq protein-coupled receptor (GPCR) stimulation is known to increase TRPC4 channel activity and a TRPC4-mediated Ca\(^{2+}\) influx which has been regarded as ideal Ca\(^{2+}\) source for calcineurin and subsequent nuclear factor of activated T-cells (NFAT) activation. Functional properties of TRPC4 are also based on the expression of the TRPC4 splice variants TRPC4α and TRPC4β. Aim of the present study was to analyze cytosolic Ca\(^{2+}\) signals, signaling, hypertrophy and vitality of cardiomyocytes in dependence on the expression level of either TRPC4α or TRPC4β. The analysis of Ca\(^{2+}\) transients in neonatal rat cardiomyocytes (NRCs) showed that TRPC4α and TRPC4β affected Ca\(^{2+}\) cycling in beating cardiomyocytes with both splice variants inducing an elevation of the Ca\(^{2+}\) transient amplitude at baseline and TRPC4β increasing the Ca\(^{2+}\) peak during angiotensin II (Ang II) stimulation. NRCs infected with TRPC4β (Ad-C4β) also responded with a sustained Ca\(^{2+}\) influx when treated with Ang II under non-pacing conditions. Consistent with the Ca\(^{2+}\) data, NRCs infected with TRPC4α (Ad-C4α) showed an elevated calcineurin/NFAT activity and a baseline hypertrophic phenotype but did not further develop hypertrophy during chronic Ang II/phenylephrine stimulation. Down-regulation of endogenous TRPC4α reversed these effects, resulting in less hypertrophy of NRCs at baseline but a markedly increased hypertrophic enlargement after chronic agonist stimulation. Ad-C4β NRCs did not exhibit baseline calcineurin/NFAT activity or hypertrophy but responded with an increased calcineurin/NFAT activity after GPCR stimulation. However, this effect was not translated into an increased propensity towards hypertrophy but rather less hypertrophy during GPCR stimulation. Further analyses revealed that, although hypertrophy was preserved in Ad-C4α NRCs and even attenuated in Ad-C4β NRCs, cardiomyocytes had an increased apoptosis rate and thus were less viable after chronic GPCR stimulation. These findings suggest that TRPC4α and TRPC4β differentially affect Ca\(^{2+}\) signals, calcineurin/NFAT signaling and hypertrophy but similarly impair cardiomyocyte viability during GPCR stimulation. 2016 PLoS ONE 11 12 urn:nbn:de:bvb:20-opus-178539 10.1371/journal.pone.0168446 Physiologisches Institut OPUS4-20158 Dissertation Dannhäuser, Sven Function of the Drosophila adhesion-GPCR Latrophilin/CIRL in nociception and neuropathy Touch sensation is the ability to perceive mechanical cues which is required for essential behaviors. These encompass the avoidance of tissue damage, environmental perception, and social interaction but also proprioception and hearing. Therefore research on receptors that convert mechanical stimuli into electrical signals in sensory neurons remains a topical research focus. However, the underlying molecular mechanisms for mechano-metabotropic signal transduction are largely unknown, despite the vital role of mechanosensation in all corners of physiology. Being a large family with over 30 mammalian members, adhesion-type G protein-coupled receptors (aGPCRs) operate in a vast range of physiological processes. Correspondingly, diverse human diseases, such as developmental disorders, defects of the nervous system, allergies and cancer are associated with these receptor family. Several aGPCRs have recently been linked to mechanosensitive functions suggesting, that processing of mechanical stimuli may be a common feature of this receptor family - not only in classical mechanosensory structures. This project employed Drosophila melanogaster as the candidate to analyze the aGPCR Latrophilin/dCIRL function in mechanical nociception in vivo. To this end, we focused on larval sensory neurons and investigated molecular mechanisms of dCIRL activity using noxious mechanical stimuli in combination with optogenetic tools to manipulate second messenger pathways. In addition, we made use of a neuropathy model to test for an involvement of aGPCR signaling in the malfunctioning peripheral nervous system. To do so, this study investigated and characterized nocifensive behavior in dCirl null mutants (dCirlKO) and employed genetically targeted RNA-interference (RNAi) to cell-specifically manipulate nociceptive function. The results revealed that dCirl is transcribed in type II class IV peripheral sensory neurons - a cell type that is structurally similar to mammalian nociceptors and detects different nociceptive sensory modalities. Furthermore, dCirlKO larvae showed increased nocifensive behavior which can be rescued in cell specific reexpression experiments. Expression of bPAC (bacterial photoactivatable adenylate cyclase) in these nociceptive neurons enabled us to investigate an intracellular signaling cascade of dCIRL function provoked by light-induced elevation of cAMP. Here, the findings demonstrated that dCIRL operates as a down-regulator of nocifensive behavior by modulating nociceptive neurons. Given the clinical relevance of this results, dCirl function was tested in a chemically induced neuropathy model where it was shown that cell specific overexpression of dCirl rescued nocifensive behavior but not nociceptor morphology. 2021 urn:nbn:de:bvb:20-opus-201580 10.25972/OPUS-20158 Graduate School of Life Sciences OPUS4-19066 Wissenschaftlicher Artikel Werner, Franziska; Kojonazarov, Baktybek; Gaßner, Birgit; Abeßer, Marco; Schuh, Kai; Völker, Katharina; Baba, Hideo A.; Dahal, Bhola K.; Schermuly, Ralph T.; Kuhn, Michaela Endothelial actions of atrial natriuretic peptide prevent pulmonary hypertension in mice The cardiac hormone atrial natriuretic peptide (ANP) regulates systemic and pulmonary arterial blood pressure by activation of its cyclic GMP-producing guanylyl cyclase-A (GC-A) receptor. In the lung, these hypotensive effects were mainly attributed to smooth muscle-mediated vasodilatation. It is unknown whether pulmonary endothelial cells participate in the homeostatic actions of ANP. Therefore, we analyzed GC-A/cGMP signalling in lung endothelial cells and the cause and functional impact of lung endothelial GC-A dysfunction. Western blot and cGMP determinations showed that cultured human and murine pulmonary endothelial cells exhibit prominent GC-A expression and activity which were markedly blunted by hypoxia, a condition known to trigger pulmonary hypertension (PH). To elucidate the consequences of impaired endothelial ANP signalling, we studied mice with genetic endothelial cell-restricted ablation of the GC-A receptor (EC GC-A KO). Notably, EC GC-A KO mice exhibit PH already under resting, normoxic conditions, with enhanced muscularization of small arteries and perivascular infiltration of inflammatory cells. These alterations were aggravated on exposure of mice to chronic hypoxia. Lung endothelial GC-A dysfunction was associated with enhanced expression of angiotensin converting enzyme (ACE) and increased pulmonary levels of Angiotensin II. Angiotensin II/AT(1)-blockade with losartan reversed pulmonary vascular remodelling and perivascular inflammation of EC GC-A KO mice, and prevented their increment by chronic hypoxia. This experimental study indicates that endothelial effects of ANP are critical to prevent pulmonary vascular remodelling and PH. Chronic endothelial ANP/GC-A dysfunction, e.g. provoked by hypoxia, is associated with activation of the ACE-angiotensin pathway in the lung and PH. 2016 16 Basic Research in Cardiology 111 2 urn:nbn:de:bvb:20-opus-190664 10.1007/s00395-016-0541-x Physiologisches Institut OPUS4-19282 Dissertation Pickel, Simone Role of the β subunit of L-type calcium channels in cardiac hypertrophy L-type calcium channels (LTCCs) control crucial physiological processes in cardiomyocytes such as the duration and amplitude of action potentials, excitation-contraction coupling and gene expression, by regulating the entry of Ca2+ into the cells. Cardiac LTCCs consist of one pore-forming α1 subunit and the accessory subunits Cavβ, Cavα2δ and Cavγ. Of these auxiliary subunits, Cavβ is the most important regulator of the channel activity; however, it can also have LTCC-independent cellular regulatory functions. Therefore, changes in the expression of Cavβ can lead not only to a dysregulation of LTCC activity, but also to changes in other cellular functions. Cardiac hypertrophy is one of the most relevant risk factors for congestive heart failure and depends on the activation of calcium-dependent prohypertrophic signaling pathways. However, the role of LTCCs and especially Cavβ in this pathology is controversial and needs to be further elucidated. Of the four Cavβ isoforms, Cavβ2 is the predominant one in cardiomyocytes. Moreover, there are five different splice variants of Cavβ2 (Cavβ2a-e), differing only in the N-terminal region. We reported that Cavβ2b is the predominant variant expressed in the heart. We also revealed that a pool of Cavβ2 is targeted to the nucleus in cardiomyocytes. The expression of the nuclear Cavβ2 decreases during in vitro and in vivo induction of cardiomyocyte hypertrophy and overexpression of a nucleus-targeted Cavβ2 completely abolishes the in vitro induced hypertrophy. Additionally, we demonstrated by shRNA-mediated protein knockdown that downregulation of Cavβ2 enhances the hypertrophy induced by the α1-adrenergic agonist phenylephrine (PE) without involvement of LTCC activity. These results suggest that Cavβ2 can regulate cardiac hypertrophy through LTCC-independent pathways. To further validate the role of the nuclear Cavβ2, we performed quantitative proteome analyses of Cavβ2-deficient neonatal rat cardiomyocytes (NRCs). The results show that downregulation of Cavβ2 influences the expression of various proteins, including a decrease of calpastatin, an inhibitor of the calcium-dependent cysteine protease calpain. Moreover, downregulation of Cavβ2 during cardiomyocyte hypertrophy drastically increases calpain activity as compared to controls after treatment with PE. Finally, the inhibition of calpain by calpeptin abolishes the increase in PE-induced hypertrophy in Cavβ2-deficient cells. These results suggest that nuclear Cavβ2 has Ca2+- and LTCC-independent functions during the development of hypertrophy. Overall, our results indicate a new role for Cavβ2 in antihypertrophic signaling in cardiac hypertrophy. 2020 urn:nbn:de:bvb:20-opus-192829 10.25972/OPUS-19282 Fakultät für Biologie OPUS4-18729 Wissenschaftlicher Artikel Markert, Sebastian Matthias; Britz, Sebastian; Proppert, Sven; Lang, Marietta; Witvliet, Daniel; Mulcahy, Ben; Sauer, Markus; Zhen, Mei; Bessereau, Jean-Louis; Stigloher, Christian Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses. 2016 041802 Neurophotonics 3 4 urn:nbn:de:bvb:20-opus-187292 10.1117/1.NPh.3.4.041802 Physiologisches Institut OPUS4-17052 Wissenschaftlicher Artikel Scholz, Nicole; Guan, Chonglin; Nieberler, Matthias; Grotmeyer, Alexander; Maiellaro, Isabella; Gao, Shiqiang; Beck, Sebastian; Pawlak, Matthias; Sauer, Markus; Asan, Esther; Rothemund, Sven; Winkler, Jana; Prömel, Simone; Nagel, Georg; Langenhan, Tobias; Kittel, Robert J Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response. 2017 eLife 6 e28360 urn:nbn:de:bvb:20-opus-170520 10.7554/eLife.28360 Institut für Pharmakologie und Toxikologie OPUS4-17752 Wissenschaftlicher Artikel Beck, Sebastian; Yu-Strzelczyk, Jing; Pauls, Dennis; Constantin, Oana M.; Gee, Christine E.; Ehmann, Nadine; Kittel, Robert J.; Nagel, Georg; Gao, Shiqiang Synthetic light-activated ion channels for optogenetic activation and inhibition Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons. 2018 Frontiers in Neuroscience 12 643 urn:nbn:de:bvb:20-opus-177520 10.3389/fnins.2018.00643 Physiologisches Institut OPUS4-17879 Dissertation Grotemeyer, Alexander Characterisation and application of new optogenetic tools in \(Drosophila\) \(melanogaster\) Since Channelrhodopsins has been described first and introduced successfully in freely moving animals (Nagel et al., 2003 and 2005), tremendous impact has been made in this interesting field of neuroscience. Subsequently, many different optogenetic tools have been described and used to address long-lasting scientific issues. Furthermore, beside the 'classical' Channelrhodopsin-2 (ChR2), basically a cation-selective ion channel, also altered ChR2 descendants, anion selective channels and light-sensitive metabotropic proteins have expanded the optogenetic toolbox. However, in spite of this variety of different tools most researches still pick Channelrhodopsin-2 for their optogenetic approaches due to its well-known kinetics. In this thesis, an improved Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), is described, which might become an useful tool to provide ambitious neuroscientific approaches by dint of its characteristics. Here, ChR2XXM was chosen to investigate the functional consequences of Drosophila larvae lacking latrophilin in their chordotonal organs. Finally, the functionality of GtACR, was checked at the Drosophila NMJ. For a in-depth characterisation, electrophysiology along with behavioural setups was employed. In detail, ChR2XXM was found to have a better cellular expression pattern, high spatiotemporal precision, substantial increased light sensitivity and improved affinity to its chromophore retinal, as compared to ChR2. Employing ChR2XXM, effects of latrophilin (dCIRL) on signal transmission in the chordotonal organ could be clarified with a minimum of side effects, e.g. possible heat response of the chordotonal organ, due to high light sensitivity. Moreover, optogenetic activation of the chordotonal organ, in vivo, led to behavioural changes. Additionally, GtACR1 was found to be effective to inhibit motoneuronal excitation but is accompanied by unexpected side effects. These results demonstrate that further improvement and research of optogenetic tools is highly valuable and required to enable researchers to choose the best fitting optogenetic tool to address their scientific questions. 2019 urn:nbn:de:bvb:20-opus-178793 10.25972/OPUS-17879 Physiologisches Institut OPUS4-17665 Wissenschaftlicher Artikel Jansch, Charline; Günther, Katharina; Waider, Jonas; Ziegler, Georg C.; Forero, Andrea; Kollert, Sina; Svirin, Evgeniy; Pühringer, Dirk; Kwok, Chee Keong; Ullmann, Reinhard; Maierhofer, Anna; Flunkert, Julia; Haaf, Thomas; Edenhofer, Frank; Lesch, Klaus-Peter Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3 Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner. 2018 136-140 Stem Cell Research 28 urn:nbn:de:bvb:20-opus-176654 10.1016/j.scr.2018.02.005 Institut für Humangenetik OPUS4-17632 Wissenschaftlicher Artikel Tauscher, Sabine; Nakagawa, Hitoshi; Völker, Katharina; Werner, Franziska; Krebes, Lisa; Potapenko, Tamara; Doose, Sören; Birkenfeld, Andreas L.; Baba, Hideo A.; Kuhn, Michaela β Cell-specific deletion of guanylyl cyclase A, the receptor for atrial natriuretic peptide, accelerates obesity-induced glucose intolerance in mice Background: The cardiac hormones atrial (ANP) and B-type natriuretic peptides (BNP) moderate arterial blood pressure and improve energy metabolism as well as insulin sensitivity via their shared cGMP-producing guanylyl cyclase-A (GC-A) receptor. Obesity is associated with impaired NP/GC-A/cGMP signaling, which possibly contributes to the development of type 2 diabetes and its cardiometabolic complications. In vitro, synthetic ANP, via GC-A, stimulates glucose-dependent insulin release from cultured pancreatic islets and β-cell proliferation. However, the relevance for systemic glucose homeostasis in vivo is not known. To dissect whether the endogenous cardiac hormones modulate the secretory function and/or proliferation of β-cells under (patho)physiological conditions in vivo, here we generated a novel genetic mouse model with selective disruption of the GC-A receptor in β-cells. Methods: Mice with a floxed GC-A gene were bred to Rip-CreTG mice, thereby deleting GC-A selectively in β-cells (β GC-A KO). Weight gain, glucose tolerance, insulin sensitivity, and glucose-stimulated insulin secretion were monitored in normal diet (ND)- and high-fat diet (HFD)-fed mice. β-cell size and number were measured by immunofluorescence-based islet morphometry. Results: In vitro, the insulinotropic and proliferative actions of ANP were abolished in islets isolated from β GC-A KO mice. Concordantly, in vivo, infusion of BNP mildly enhanced baseline plasma insulin levels and glucose-induced insulin secretion in control mice. This effect of exogenous BNP was abolished in β GC-A KO mice, corroborating the efficient inactivation of the GC-A receptor in β-cells. Despite this under physiological, ND conditions, fasted and fed insulin levels, glucose-induced insulin secretion, glucose tolerance and β-cell morphology were similar in β GC-A KO mice and control littermates. However, HFD-fed β GC-A KO animals had accelerated glucose intolerance and diminished adaptative β-cell proliferation. Conclusions: Our studies of β GC-A KO mice demonstrate that the cardiac hormones ANP and BNP do not modulate β-cell's growth and secretory functions under physiological, normal dietary conditions. However, endogenous NP/GC-A signaling improves the initial adaptative response of β-cells to HFD-induced obesity. Impaired β-cell NP/GC-A signaling in obese individuals might contribute to the development of type 2 diabetes. 2018 Cardiovascular Diabetology 17 103 urn:nbn:de:bvb:20-opus-176322 10.1186/s12933-018-0747-3 Physiologisches Institut OPUS4-14899 Wissenschaftlicher Artikel Ehmann, Nadine; Sauer, Markus; Kittel, Robert J. Super-resolution microscopy of the synaptic active zone Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins 2015 Frontiers in Cellular Neuroscience 9 7 urn:nbn:de:bvb:20-opus-148997 10.3389/fncel.2015.00007 Physiologisches Institut OPUS4-14898 Wissenschaftlicher Artikel Paul, Mila M.; Pauli, Martin; Ehmann, Nadine; Hallermann, Stefan; Sauer, Markus; Kittel, Robert J.; Heckmann, Manfred Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp\(^{69}\)). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp\(^{69}\) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt\(^{KD}\)) in wildtype (wt), brp\(^{69}\) and rab3 null mutants (rab3\(^{rup}\)), where Brp is concentrated at a small number of AZs. At wt and rab3\(^{rup}\) synapses, syt\(^{KD}\) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt\(^{KD}\) did not alter EPSC amplitude at brp\(^{69}\) synapses, but shortened delay and rise time. In fact, following syt\(^{KD}\), these kinetic properties were strikingly similar in wt and brp\(^{69}\), which supports the notion that Syt protracts release at brp\(^{69}\) synapses. To gain insight into this surprising role of Syt at brp\(^{69}\) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At tonic type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt\(^{KD}\). Notably, syt\(^{KD}\) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt\(^{KD}\) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt. 2015 Frontiers in Cellular Neuroscience 9 29 urn:nbn:de:bvb:20-opus-148988 10.3389/fncel.2015.00029 Physiologisches Institut OPUS4-14862 Wissenschaftlicher Artikel Scholz, Nicole; Gehring, Jennifer; Guan, Chonglin; Ljaschenko, Dmitrij; Fischer, Robin; Lakshmanan, Vetrivel; Kittel, Robert J.; Langenhan, Tobias The adhesion GPCR Latrophilin/CIRL shapes mechanosensation G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily. 2015 866-874 Cell Reports 11 urn:nbn:de:bvb:20-opus-148626 10.1016/j.celrep.2015.04.008 Physiologisches Institut OPUS4-14831 Wissenschaftlicher Artikel Kollert, Sina; Dombert, Benjamin; Döring, Frank; Wischmeyer, Erhard Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IK\(_{SO}\). A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K\(^{+}\) currents upon LPA application. In DRG neurons nociception can result from TRPV\(_{1}\) activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV\(_{1}\) and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IK\(_{SO}\) after application of LPA whereas under these conditions IK\(_{SO}\) in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders. 2015 Scientific Reports 5 12548 urn:nbn:de:bvb:20-opus-148312 10.1038/srep12548 Institut für Klinische Neurobiologie OPUS4-14518 Wissenschaftlicher Artikel Beck, Katherina; Ehmann, Nadine; Andlauer, Till F. M.; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J.; Raabe, Thomas Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling. 2015 1389-1400 Disease Models & Mechanisms 8 urn:nbn:de:bvb:20-opus-145185 10.1242/dmm.021246 Physiologisches Institut OPUS4-16232 Wissenschaftlicher Artikel Maiellaro, Isabella; Lohse, Martin J.; Kitte, Robert J.; Calebiro, Davide cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons. 2016 1238-1246 Cell Reports 17 5 urn:nbn:de:bvb:20-opus-162324 10.1016/j.celrep.2016.09.090 Institut für Pharmakologie und Toxikologie OPUS4-15448 Dissertation Offner, Kristin SH3-mediated protein interactions of Mena and VASP Regulation of actin cytoskeletal turnover is necessary to coordinate cell movement and cell adhesion. Proteins of the Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family are important mediators in cytoskeleton control, linking cyclic nucleotide signaling pathways to actin assembly. In mammals, the Ena/VASP family consists of mammalian Enabled (Mena), VASP, and Ena-VASP-like (EVL). The family members share a tripartite domain organization, consisting of an N-terminal Ena/VASP homology 1 (EVH1) domain, a central proline-rich region (PRR), and a C-terminal EVH2 domain. The EVH1 domain mediates binding to the focal adhesion proteins vinculin and zyxin, the PRR interacts with the actin-binding protein profilin and with Src homology 3 (SH3) domains, and the EVH2 domain mediates tetramerization and actin binding. Endothelial cells line vessel walls and form a semipermeable barrier between blood and the underlying tissue. Endothelial barrier function depends on the integrity of cell-cell junctions and defective sealing of cell-cell contacts results in vascular leakage and edema formation. In a previous study, we could identify a novel interaction of the PRR of VASP with αII-spectrin. VASP-targeting to endothelial cell-cell contacts by interaction with the αII-spectrin SH3 domain is sufficient to initiate perijunctional actin filament assembly, which in turn stabilizes cell-cell contacts and decreases endothelial permeability. Conversely, barrier function of VASP-deficient endothelial cells and microvessels of VASP- null mice is defective, demonstrating that αII-spectrin/VASP complexes regulate endothelial barrier function in vivo. The aim of the present study was to characterize the structural aspects of the binding of Ena/VASP proteins to αII-spectrin in more detail. These data are highly relevant to understand the cardiovascular function of VASP and its subcellular targeting. In the present study, the following points were experimentally addressed: 1. Comparison of the interaction between αII-spectrin and Mena, VASP, or EVL In contrast to the highly conserved EVH1/EVH2 domains, the PRR is the most divergent part within the Ena/VASP proteins and may differ in binding modes and mechanisms of regulation. More specifically, VASP contains a triple GP5 motif, whereas EVL and Mena contain one or more GP6 motifs or even longer proline stretches. In the present study, we used peptide scans and competitive αII-spectrin SH3 pull-down assays with the recombinant Mena, VASP, and VASP mutants to investigate the relative binding efficiency. Our results indicate that binding of the αII-spectrin SH3 domain to GP6 motifs is superior to GP5 motifs, giving a rationale for a stronger interaction of αII-spectrin with EVL and Mena than with VASP. 2. Interaction of SH3i with Ena/VASP proteins In the mammalian heart, an αII-spectrin splice variant exists (SH3i), which contains a 20 amino acid insertion C-terminal to the SH3 domain. We used GST-fusion proteins of αII-spectrin, comprising the SH3 domain with or without the alternatively spliced amino acids, to pull-down recombinant Mena, VASP or VASP mutants. The results demonstrate a substantially increased binding of the C-terminal extended SH3 domain as compared to the general αII-spectrin isoform without the 20 amino acid insertion. These findings were also confirmed in pull-down experiments with heart lysates and purified Mena from heart muscle. The increased binding was not due to an alternative, SH3-independent binding interface because a pointmutation of the SH3 domain (W1004R) in the alternatively spliced αII-spectrin isoform completely abrogated the interaction. To analyze the interaction of SH3i and Ena/VASP proteins in living cells, we expressed the extended SH3 domain as GFP fusion proteins in endothelial cells. Here, we observed an extensive co-localization with Mena and VASP at the leading edge of lamellipodia confirming the in vivo relevance of the interaction with potential impact on cell migration and angiogenesis. 3. Binding affinity and influence of the Ena/VASP tetramerization domain We also determined the binding affinity of the general and the alternatively spliced αII-spectrin SH3 with Ena/VASP proteins by isothermal titration calorimetry (ITC) using a peptide from the PRR of Mena (collaboration with Dr. Stephan Feller, University of Oxford). Surprisingly, the binding affinity of the general SH3 domain was low (~900 μM) as compared to other SH3 domain- mediated interactions, which commonly display binding constants in the low micromolar range. Furthermore and in contrast to the pull-down assays, we could not detect an increased binding affinity of the C-terminally extended SH3 domain. This could be either explained by the existence of a third protein, which "bridges" the Mena/αII-spectrin complex in the pull-down assays, or, more likely, by the small size of the Mena peptide, which lacks major parts of the Mena protein, including the tetramerization domain. Indeed, it has been previously shown that the tetramerization of Ena is crucial for the interaction with the Abl- SH3 domain, although no SH3 binding sites are found in the tetramerization domain. To address this point experimentally, we used a VASP mutant that lacks the tetramerization domain in pull-down assays. Neither the general nor the alternatively spliced SH3 domain bound to the monomeric VASP, demonstrating the crucial (indirect) impact of Ena/VASP tetramerization on the interaction with αII-spectrin. In summary, we conclude that the αII-spectrin SH3 domain binds to the proline- rich region of all Ena/VASP proteins. However, binding to EVL and Mena, which both possess one or more GP6 motifs, is substantially more efficient than VASP, which only contains GP5 motifs. The C-terminally extended SH3 domain, which is present in the αII-spectrin splice variant SH3i, binds stronger to the Ena/VASP proteins than the general isoform and expression of the isolated domain is sufficient for co-localization with Ena/VASP in living endothelial cells. Finally, the tetramerization of the Ena/VASP proteins is indispensable for the interaction with either isoform of αII-spectrin. 2017 urn:nbn:de:bvb:20-opus-154481 Physiologisches Institut OPUS4-14312 Wissenschaftlicher Artikel Hoffmann, Linda S.; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W. C.; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing \(\beta\)\(_{1}\)-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. 2015 Nature Communications 6 7235 urn:nbn:de:bvb:20-opus-143127 10.1038/ncomms8235 Physiologisches Institut OPUS4-14796 Wissenschaftlicher Artikel Subramanian, Hariharan; Döring, Frank; Kollert, Sina; Rukoyatkina, Natalia; Sturm, Julia; Gambaryan, Stepan; Stellzig-Eisenhauer, Angelika; Meyer-Marcotty, Philipp; Eigenthaler, Martin; Wischmeyer, Erhard PTH1R Mutants Found in Patients with Primary Failure of Tooth Eruption Disrupt G-Protein Signaling Aim Primary failure of tooth eruption (PFE) is causally linked to heterozygous mutations of the parathyroid hormone receptor (PTH1R) gene. The mutants described so far lead to exchange of amino acids or truncation of the protein that may result in structural changes of the expressed PTH1R. However, functional effects of these mutations have not been investigated yet. Materials and Methods In HEK293 cells, PTH1R wild type was co-transfected with selected PTH1R mutants identified in patients with PFE. The effects on activation of PTH-regulated intracellular signaling pathways were analyzed by ELISA and Western immunoblotting. Differential effects of wild type and mutated PTH1R on TRESK ion channel regulation were analyzed by electrophysiological recordings in Xenopus laevis oocytes. Results In HEK293 cells, activation of PTH1R wild type increases cAMP and in response activates cAMP-stimulated protein kinase as detected by phosphorylation of the vasodilator stimulated phosphoprotein (VASP). In contrast, the PTH1R mutants are functionally inactive and mutant PTH1R/Gly452Glu has a dominant negative effect on the signaling of PTH1R wild type. Confocal imaging revealed that wild type PTH1R is expressed on the cell surface, whereas PTH1R/Gly452Glu mutant is mostly retained inside the cell. Furthermore, in contrast to wild type PTH1R which substantially augmented K+ currents of TRESK channels, coupling of mutated PTH1R to TRESK channels was completely abolished. Conclusions PTH1R mutations affect intracellular PTH-regulated signaling in vitro. In patients with primary failure of tooth eruption defective signaling of PTH1R mutations is suggested to occur in dento-alveolar cells and thus may lead to impaired tooth movement. 2016 e0167033 PLoS One 11 11 urn:nbn:de:bvb:20-opus-147967 10.1371/journal.pone.0167033 Institut für Klinische Biochemie und Pathobiochemie OPUS4-14660 Wissenschaftlicher Artikel Israel, Ina; Ohsiek, Andrea; Al-Momani, Ehab; Albert-Weissenberger, Christiane; Stetter, Christian; Mencl, Stine; Buck, Andreas K.; Kleinschnitz, Christoph; Samnick, Samuel; Sirén, Anna-Leena Combined [\(^{18}\)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [\(^{18}\)F]DPA-714 was performed on day 1, 7, and 16 and [\(^{18}\)F]FDG-μPET imaging for energy metabolism on days 2-5 after trauma using freshly synthesized radiotracers. Immediately after [\(^{18}\)F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [\(^{18}\)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [\(^{18}\)F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [\(^{18}\)F]FDG uptake on days 2-5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [\(^{18}\)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [\(^{18}\)F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [\(^{18}\)F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI. 2016 Journal of Neuroinflammation 13 140 urn:nbn:de:bvb:20-opus-146606 10.1186/s12974-016-0604-9 Neurochirurgische Klinik und Poliklinik OPUS4-14622 Dissertation Guan, Chonglin Functional and genetic dissection of mechanosensory organs of \(Drosophila\) \(melanogaster\) In Drosophila larvae and adults, chordotonal organs (chos) are highly versatile mechanosensors that are essential for proprioception, touch sensation and hearing. Chos share molecular, anatomical and functional properties with the inner ear hair cells of mammals. These multiple similarities make chos powerful models for the molecular study of mechanosensation. In the present study, I have developed a preparation to directly record from the sensory neurons of larval chos (from the lateral chos or lch5) and managed to correlate defined mechanical inputs with the corresponding electrical outputs. The findings of this setup are described in several case studies. (1) The basal functional lch5 parameters, including the time course of response during continuous mechanical stimulation and the recovery time between successive bouts of stimulation, was characterized. (2) The calcium-independent receptor of α-latrotoxin (dCIRL/Latrophilin), an Adhesion class G protein-coupled receptor (aGPCR), is identified as a modulator of the mechanical signals perceived by lch5 neurons. The results indicate that dCIRL/Latrophilin is required for the perception of external and internal mechanical stimuli and shapes the sensitivity of neuronal mechanosensation. (3) By combining this setup with optogenetics, I have confirmed that dCIRL modulates lch5 neuronal activity at the level of their receptor current (sensory encoding) rather than their ability to generate action potentials. (4) dCIRL´s structural properties (e.g. ectodomain length) are essential for the mechanosensitive properties of chordotonal neurons. (5) The versatility of chos also provides an opportunity to study multimodalities at multiple levels. In this context, I performed an experiment to directly record neuronal activities at different temperatures. The results show that both spontaneous and mechanically evoked activity increase in proportion to temperature, suggesting that dCIRL is not required for thermosensation in chos. These findings, from the development of an assay of sound/vibration sensation, to neuronal signal processing, to molecular aspects of mechanosensory transduction, have provided the first insights into the mechanosensitivity of dCIRL. In addition to the functional screening of peripheral sensory neurons, another electrophysiological approach was applied in the central nervous system: dCIRL may impact the excitability of the motor neurons in the ventral nerve cord (VNC). In the second part of my work, whole-cell patch clamp recordings of motor neuron somata demonstrated that action potential firing in the dCirl\(^K\)\(^O\) did not differ from control samples, indicating comparable membrane excitability. 2016 urn:nbn:de:bvb:20-opus-146220 Graduate School of Life Sciences OPUS4-14327 Dissertation Backhaus, Philipp Effects of Transgenic Expression of Botulinum Toxins in Drosophila Clostridial neurotoxins (botulinum toxins and tetanus toxin) disrupt neurotransmitter release by cleaving neuronal SNARE proteins. We generated transgenic flies allowing for conditional expression of different botulinum toxins and evaluated their potential as tools for the analysis of synaptic and neuronal network function in Drosophila melanogaster by applying biochemical assays and behavioral analysis. On the biochemical level, cleavage assays in cultured Drosophila S2 cells were performed and the cleavage efficiency was assessed via western blot analysis. We found that each botulinum toxin cleaves its Drosophila SNARE substrate but with variable efficiency. To investigate the cleavage efficiency in vivo, we examined lethality, larval peristaltic movements and vision dependent motion behavior of adult Drosophila after tissue-specific conditional botulinum toxin expression. Our results show that botulinum toxin type B and botulinum toxin type C represent effective alternatives to established transgenic effectors, i.e. tetanus toxin, interfering with neuronal and non-neuronal cell function in Drosophila and constitute valuable tools for the analysis of synaptic and network function. 2016 urn:nbn:de:bvb:20-opus-143279 Physiologisches Institut OPUS4-14193 Wissenschaftlicher Artikel Bahník, Štěpán; Stuchlík, Aleš Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidancemust be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark. 2015 PeerJ 3 e1257 urn:nbn:de:bvb:20-opus-141931 10.7717/peerj.1257 Physiologisches Institut OPUS4-10735 Dissertation Ullrich, Melanie Identification of SPRED2 as a Novel Regulator of Hypothalamic-Pituitary-Adrenal Axis Activity and of Body Homeostasis SPRED proteins are inhibitors of the Ras/ERK/MAPK signaling pathway, an evolutionary highly conserved and very widespread signaling cascade regulating cell proliferation, differentiation, and growth. To elucidate physiological consequences of SPRED2 deficiency, SPRED2 KO mice were generated by a gene trap approach. An initial phenotypical characterization of KO mice aged up to five months identified SPRED2 as a regulator of chondrocyte differentiation and bone growth. Here, the loss of SPRED2 leads to an augmented FGFR-dependent ERK activity, which in turn causes hypochondroplasia-like dwarfism. However, long term observations of older KO mice revealed a generally bad state of health and manifold further symptoms, including excessive grooming associated with severe self-inflicted wounds, an abnormally high water uptake, clear morphological signs of kidney deterioration, and a reduced survival due to sudden death. Based on these observations, the aim of this study was to discover an elicitor of this complex and versatile phenotype. The observed kidney degeneration in our SPRED2 KO mice was ascribed to hydronephrosis characterized by severe kidney atrophy and apoptosis of renal tubular cells. Kidney damage prompted us to analyze drinking behavior and routine serum parameters. Despite polydipsia, which was characterized by a nearly doubled daily water uptake, the significantly elevated Na+ and Cl- levels and the resulting serum hyperosmolality could not be compensated in SPRED2 KOs. Since salt and water balance is primarily under hormonal control of aldosterone and AVP, we analyzed both hormone levels. While serum AVP was similar in WTs and KOs, even after experimental water deprivation and an extreme loss of body fluid, serum aldosterone was doubled in SPRED2 KO mice. Systematic investigation of contributing upstream hormone axes demonstrated that hyperaldosteronism developed independently of an overactivated Renin-Angiotensin system as indicated by halved serum Ang II levels in KO mice. However, aldosterone synthase expression in the adrenal gland was substantially augmented. Serum corticosterone, which is like aldosterone released from the adrenal cortex, was more than doubled in SPRED2 KOs, too. Similar to corticosterone, the production of aldosterone is at least in part under control of pituitary ACTH, which is further regulated by upstream hypothalamic CRH release. In fact, stress hormone secretion from this complete hypothalamic-pituitary-adrenal axis was upregulated because serum ACTH, the mid acting pituitary hormone, and hypothalamic CRH, the upstream hormonal inductor of HPA axis activity, were also elevated by 30% in SPRED2 KO mice. This was accompanied by an upregulated ERK activity in paraventricular nucleus-containing hypothalamic brain regions and by augmented hypothalamic CRH mRNA levels in our SPRED2 KO mice. In vitro studies using the hypothalamic cell line mHypoE-44 further demonstrated that both SPRED1 and SPRED2 were able to downregulate CRH promoter activity, CRH secretion, and Ets factor-dependent CRH transcription. This was in line with the presence of various Ets factor binding sites in the CRH promoter region, especially for Ets1. Thus, this study shows for the first time that SPRED2-dependent inhibition of Ras/ERK/MAPK signaling by suppression of ERK activity leads to a downregulation of Ets1 factor-dependent transcription, which further results in inhibition of CRH promoter activity, CRH transcription, and CRH release from the hypothalamus. The consecutive hyperactivity of the complete HPA axis in our SPRED2 KO mice reflects an elevated endogenous stress response becoming manifest by excessive grooming behavior and self-inflicted skin lesions on the one hand; on the other hand, in combination with elevated aldosterone synthase expression, this upregulated HPA hormone release explains hyperaldosteronism and the associated salt and water imbalances. Both hyperaldosteronism and polydipsia very likely contribute further to the observed kidney damage. Taken together, this study initially demonstrates that SPRED2 is essential for the appropriate regulation of HPA axis activity and of body homeostasis. To further enlighten and compare consequences of SPRED2 deficiency in mice and particularly in humans, two follow-up studies investigating SPRED2 function especially in heart and brain, and a genetic screen to identify human SPRED2 loss-of-function mutations are already in progress. 2014 urn:nbn:de:bvb:20-opus-107355 Physiologisches Institut OPUS4-13058 Wissenschaftlicher Artikel Korb, Doreen; Tng, Priscilla Y.; Milenkovic, Vladimir M.; Reichhart, Nadine; Strauss, Olaf; Ritter, Oliver; Fischer, Tobias; Benz, Peter M.; Schuh, Kai Identification of PDZ domain containing proteins interacting with \(Ca_v1.2\) and PMCA4b PDZ (PSD-95/Disc large/Zonula occludens-1) protein interaction domains bind to cytoplasmic protein C-termini of transmembrane proteins. In order to identify new interaction partners of the voltage-gated L-type \(Ca^{2+}\) channel Cav1.2 and the plasma membrane \(Ca^{2+}\) ATPase 4b (PMCA4b), we used PDZ domain arrays probing for 124 PDZ domains. We confirmed this byGST pulldowns and immunoprecipitations. In PDZ arrays, strongest interactionswith \(Ca_v1.2\) and PMCA4b were found for the PDZ domains of SAP-102, MAST-205, MAGI-1, MAGI-2, MAGI-3, and ZO-1. We observed binding of the \(Ca_v1.2\) C-terminus to PDZ domains of NHERF1/2, Mint-2, and CASK. PMCA4b was observed to interact with Mint-2 and its known interactions with Chapsyn-110 and CASK were confirmed. Furthermore, we validated interaction of \(Ca_v1.2\) and PMCA4b with NHERF1/2, CASK,MAST-205 and MAGI-3 viaimmunoprecipitation. We also verified the interaction of \(Ca_v1.2\) and nNOS and hypothesized that nNOS overexpression might reduce \(Ca^{2+}\) influx through \(Ca_v1.2\). To address this, we measured \(Ca^{2+}\) currents in HEK 293 cells co-expressing \(Ca_v1.2\) and nNOS and observed reduced voltage-dependent \(Ca_v1.2\) activation. Taken together, we conclude that \(Ca_v1.2\) and PMCA4b bind promiscuously to various PDZ domains, and that our data provides the basis for further investigation of the physiological consequences of these interactions. 2013 16 ISRN Cell Biology Article ID 265182 urn:nbn:de:bvb:20-opus-130585 10.1155/2013/265182 Physiologisches Institut OPUS4-13469 Wissenschaftlicher Artikel Frantz, Stefan; Klaiber, Michael; Baba, Hideo A.; Oberwinkler, Heinz; Völker, Katharina; Gaßner, Birgit; Bayer, Barbara; Abeßer, Marco; Schuh, Kai; Feil, Robert; Hofmann, Franz; Kuhn, Michaela Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I Aims: Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results: To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the \([Ca^{2+}]_i\)-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte \(Ca^{2+}_i\) homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, \(Ca^{2+}_i\)-handling, and contractility via cGKI. Conclusion: These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte \(Ca^{2+}_i\) handling and contractility. 2013 1233–1244 European Heart Journal 34 urn:nbn:de:bvb:20-opus-134693 Physiologisches Institut OPUS4-12880 Wissenschaftlicher Artikel Ljaschenko, Dmitrij; Ehmann, Nadine; Kittel, Robert J. Hebbian Plasticity Guides Maturation of Glutamate Receptor Fields In Vivo Synaptic plasticity shapes the development of functional neural circuits and provides a basis for cellular models of learning and memory. Hebbian plasticity describes an activity-dependent change in synaptic strength that is input-specific and depends on correlated pre- and postsynaptic activity. Although it is recognized that synaptic activity and synapse development are intimately linked, our mechanistic understanding of the coupling is far from complete. Using Channelrhodopsin-2 to evoke activity in vivo, we investigated synaptic plasticity at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation increased postsynaptic sensitivity by promoting synapse- specific recruitment of GluR-IIA-type glutamate receptor subunits into postsynaptic receptor fields. Conversely, GluR-IIA was rapidly removed from synapses whose activity failed to evoke substantial postsynaptic depolarization. Uniting these results with developmental GluR-IIA dynamics provides a comprehensive physiological concept of how Hebbian plasticity guides synaptic maturation and sparse transmitter release controls the stabilization of the molecular composition of individual synapses. 2013 1407-1413 Cell Reports 3 5 urn:nbn:de:bvb:20-opus-128804 10.1016/j.celrep.2013.04.003 Physiologisches Institut OPUS4-12769 Wissenschaftlicher Artikel Tafler, R.; Herbert, M. K.; Schmidt, R. F.; Weis, K. H. Small reduction of capsaicin-induced neurogenic inflammation in human forearm skin by the glucocorticoid prednicarbate No abstract available. 1993 C31-34 Agents Actions 38 Special Conference Issue urn:nbn:de:bvb:20-opus-127698 Klinik für Anaesthesiologie (bis 2003)