Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-15464 Wissenschaftlicher Artikel Majounie, Elisa; Renton, Alan E.; Mok, Kin; Dopper, Elise G. P.; Waite, Adrian; Rollinson, Sara; Chiò, Adriano; Restagno, Gabriella; Nicolaou, Nayia; Simon-Sanchez, Javier; van Swieten, John C.; Abramzon, Yevgeniya; Johnson, Janel O.; Sendtner, Michael; Pamphlett, Roger; Orrell, Richard W.; Mead, Simon; Sidle, Katie C.; Houlden, Henry; Rohrer, Jonathan D.; Morrison, Karen E.; Pall, Hardev; Talbot, Kevin; Ansorge, Olaf; Hernandez, Dena G.; Arepalli, Sampath; Sabatelli, Mario; Mora, Gabriele; Corbo, Massimo; Giannini, Fabio; Calvo, Andrea; Englund, Elisabet; Borghero, Giuseppe; Floris, Gian Luca; Remes, Anne M.; Laaksovirta, Hannu; McCluskey, Leo; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Schellenberg, Gerard D.; Nalls, Michael A.; Drory, Vivian E.; Lu, Chin-Song; Yeh, Tu-Hsueh; Ishiura, Hiroyuki; Takahashi, Yuji; Tsuji, Shoji; Le Ber, Isabelle; Brice, Alexis; Drepper, Carsten; Williams, Nigel; Kirby, Janine; Shaw, Pamela; Hardy, John; Tienari, Pentti J.; Heutink, Peter; Morris, Huw R.; Pickering-Brown, Stuart; Traynor, Bryan J. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. 2012 7 The Lancet Neurology 11 323 330 urn:nbn:de:bvb:20-opus-154644 10.1016/S1474-4422(12)70043-1 Institut für Klinische Neurobiologie OPUS4-12095 Wissenschaftlicher Artikel Hornburg, Daniel; Drepper, Carsten; Butter, Falk; Meissner, Felix; Sendtner, Michael; Mann, Matthias Deep Proteomic Evaluation of Primary and Cell Line Motoneuron Disease Models Delineates Major Differences in Neuronal Characteristics* The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems. 2014 3410-20 Molecular & Cellular Proteomics : MCP 13 12 urn:nbn:de:bvb:20-opus-120954 10.1074/mcp.M113.037291 Institut für Klinische Neurobiologie OPUS4-26568 Wissenschaftlicher Artikel Ghanawi, Hanaa; Hennlein, Luisa; Zare, Abdolhossein; Bader, Jakob; Salehi, Saeede; Hornburg, Daniel; Ji, Changhe; Sivadasan, Rajeeve; Drepper, Carsten; Meissner, Felix; Mann, Matthias; Jablonka, Sibylle; Briese, Michael; Sendtner, Michael Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnpr\(^{tm1a/tm1a}\)) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnpr\(^{tm1a/tm1a}\) mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with gamma-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context. 2021 12284-12305 Nucleic Acids Research 49 21 urn:nbn:de:bvb:20-opus-265687 10.1093/nar/gkab1120 Institut für Klinische Neurobiologie OPUS4-15456 Wissenschaftlicher Artikel Simon, Christian M.; Rauskolb, Stefanie; Gunnersen, Jennifer M.; Holtmann, Bettina; Drepper, Carsten; Dombert, Benjamin; Braga, Massimiliano; Wiese, Stefan; Jablonka, Sibylle; Pühringer, Dirk; Zielasek, Jürgen; Hoeflich, Andreas; Silani, Vincenzo; Wolf, Eckhard; Kneitz, Susanne; Sommer, Claudia; Toyka, Klaus V.; Sendtner, Michael Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes.The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor(IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP. 2015 14 Acta Neuropathologica 130 373 387 urn:nbn:de:bvb:20-opus-154569 10.1007/s00401-015-1446-8 Frauenklinik und Poliklinik