Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-14092 Wissenschaftlicher Artikel Hill, Philip J.; Stritzker, Jochen; Scadeng, Miriam; Geissinger, Ulrike; Haddad, Daniel; Basse-Lüsebrink, Thomas C.; Gbureck, Uwe; Jakob, Peter; Szalay, Aladar A. Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing \(Escherichia\) \(coli\) Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes. 2011 e25409 PLoS ONE 6 10 urn:nbn:de:bvb:20-opus-140920 10.1371/journal.pone.0025409 Physikalisches Institut OPUS4-6402 Wissenschaftlicher Artikel Szalay, Aladar A.; Hill, Philip J.; Stritzker, Jochen; Scadeng, Miriam; Geissinger, Ulrike; Haddad, Daniel; Basse-Lüsebrink, Thomas C.; Gbureck, Uwe; Jakob, Peter Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing Escherichia coli Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes 2011 urn:nbn:de:bvb:20-opus-75789 Rudolf-Virchow-Zentrum