Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-16129 Wissenschaftlicher Artikel Werner, Rudolf; Solnes, Lilja; Javadi, Mehrbod; Weich, Alexander; Gorin, Michael; Pienta, Kenneth; Higuchi, Takahiro; Buck, Andreas; Pomper, Martin; Rowe, Steven; Lapa, Constantin SSTR-RADS Version 1.0 as a Reporting System for SSTR-PET Imaging and Selection of Potential PRRT Candidates: A Proposed Standardization Framework Reliable standards and criteria for somatostatin receptor (SSTR) positron emission tomography (PET) are still lacking. We herein propose a structured reporting system on a 5-point scale for SSTR-PET imaging, titled SSTR-RADS version 1.0, which might serve as a standardized assessment for both diagnosis and treatment planning in neuroendocrine tumors (NET). SSTR-RADS could guide the imaging specialist in interpreting SSTR-PET scans, facilitate communication with the referring clinician so that appropriate work-up for equivocal findings is pursued, and serve as a reliable tool for patient selection for planned Peptide Receptor Radionuclide Therapy. 2018 Journal of Nuclear Medicine urn:nbn:de:bvb:20-opus-161298 10.2967/jnumed.117.206631 Klinik und Poliklinik für Nuklearmedizin OPUS4-16699 Wissenschaftlicher Artikel Werner, Rudolf A.; Bundschuh, Ralph A.; Bundschuh, Lena; Javadi, Mehrbod S.; Higuchi, Takahiro; Weich, Alexander; Sheikhbahaei, Sara; Pienta, Kenneth J.; Buck, Andreas K.; Pomper, Martin G.; Gorin, Michael A.; Lapa, Constantin; Rowe, Steven P. MI-RADS: Molecular Imaging Reporting and Data Systems - A Generalizable Framework for Targeted Radiotracers with Theranostic Implications Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader's confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems. 2018 Annals of Nuclear Medicine urn:nbn:de:bvb:20-opus-166995 10.1007/s12149-018-1291-7 Klinik und Poliklinik für Nuklearmedizin OPUS4-17026 Wissenschaftlicher Artikel Werner, Rudolf A.; Weich, Alexander; Kircher, Malte; Solnes, Lilja B.; Javadi, Mehrbod S.; Higuchi, Takahiro; Buck, Andreas K.; Pomper, Martin G.; Rowe, Steven; Lapa, Constantin The theranostic promise for neuroendocrine tumors in the late 2010s - Where do we stand, where do we go? More than 25 years after the first peptide receptor radionuclide therapy (PRRT), the concept of somatostatin receptor (SSTR)-directed imaging and therapy for neuroendocrine tumors (NET) is seeing rapidly increasing use. To maximize the full potential of its theranostic promise, efforts in recent years have expanded recommendations in current guidelines and included the evaluation of novel theranostic radiotracers for imaging and treatment of NET. Moreover, the introduction of standardized reporting framework systems may harmonize PET reading, address pitfalls in interpreting SSTR-PET/CT scans and guide the treating physician in selecting PRRT candidates. Notably, the concept of PRRT has also been applied beyond oncology, e.g. for treatment of inflammatory conditions like sarcoidosis. Future perspectives may include the efficacy evaluation of PRRT compared to other common treatment options for NET, novel strategies for closer monitoring of potential side effects, the introduction of novel radiotracers with beneficial pharmacodynamic and kinetic properties or the use of supervised machine learning approaches for outcome prediction. This article reviews how the SSTR-directed theranostic concept is currently applied and also reflects on recent developments that hold promise for the future of theranostics in this context. 2018 6088-6100 Theranostics 8 22 urn:nbn:de:bvb:20-opus-170264 Klinik und Poliklinik für Nuklearmedizin