Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-238 Dissertation Glaßer, Christian Forbidden-Patterns and Word Extensions for Concatenation Hierarchies Starfree regular languages can be build up from alphabet letters by using only Boolean operations and concatenation. The complexity of these languages can be measured with the so-called dot-depth. This measure leads to concatenation hierarchies like the dot-depth hierarchy (DDH) and the closely related Straubing-Thérien hierarchy (STH). The question whether the single levels of these hierarchies are decidable is still open and is known as the dot-depth problem. In this thesis we prove/reprove the decidability of some lower levels of both hierarchies. More precisely, we characterize these levels in terms of patterns in finite automata (subgraphs in the transition graph) that are not allowed. Therefore, such characterizations are called forbidden-pattern characterizations. The main results of the thesis are as follows: forbidden-pattern characterization for level 3/2 of the DDH (this implies the decidability of this level) decidability of the Boolean hierarchy over level 1/2 of the DDH definition of decidable hierarchies having close relations to the DDH and STH Moreover, we prove/reprove the decidability of the levels 1/2 and 3/2 of both hierarchies in terms of forbidden-pattern characterizations. We show the decidability of the Boolean hierarchies over level 1/2 of the DDH and over level 1/2 of the STH. A technique which uses word extensions plays the central role in the proofs of these results. With this technique it is possible to treat the levels 1/2 and 3/2 of both hierarchies in a uniform way. Furthermore, it can be used to prove the decidability of the mentioned Boolean hierarchies. Among other things we provide a combinatorial tool that allows to partition words of arbitrary length into factors of bounded length such that every second factor u leads to a loop with label u in a given finite automaton. 2001 urn:nbn:de:bvb:20-1179153 Institut für Informatik