Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-15052 Dissertation Aschenbrenner, Doris Human Robot Interaction Concepts for Human Supervisory Control and Telemaintenance Applications in an Industry 4.0 Environment While teleoperation of technical highly sophisticated systems has already been a wide field of research, especially for space and robotics applications, the automation industry has not yet benefited from its results. Besides the established fields of application, also production lines with industrial robots and the surrounding plant components are in need of being remotely accessible. This is especially critical for maintenance or if an unexpected problem cannot be solved by the local specialists. Special machine manufacturers, especially robotics companies, sell their technology worldwide. Some factories, for example in emerging economies, lack qualified personnel for repair and maintenance tasks. When a severe failure occurs, an expert of the manufacturer needs to fly there, which leads to long down times of the machine or even the whole production line. With the development of data networks, a huge part of those travels can be omitted, if appropriate teleoperation equipment is provided. This thesis describes the development of a telemaintenance system, which was established in an active production line for research purposes. The customer production site of Braun in Marktheidenfeld, a factory which belongs to Procter & Gamble, consists of a six-axis cartesian industrial robot by KUKA Industries, a two-component injection molding system and an assembly unit. The plant produces plastic parts for electric toothbrushes. In the research projects "MainTelRob" and "Bayern.digital", during which this plant was utilised, the Zentrum für Telematik e.V. (ZfT) and its project partners develop novel technical approaches and procedures for modern telemaintenance. The term "telemaintenance" hereby refers to the integration of computer science and communication technologies into the maintenance strategy. It is particularly interesting for high-grade capital-intensive goods like industrial robots. Typical telemaintenance tasks are for example the analysis of a robot failure or difficult repair operations. The service department of KUKA Industries is responsible for the worldwide distributed customers who own more than one robot. Currently such tasks are offered via phone support and service staff which travels abroad. They want to expand their service activities on telemaintenance and struggle with the high demands of teleoperation especially regarding security infrastructure. In addition, the facility in Marktheidenfeld has to keep up with the high international standards of Procter & Gamble and wants to minimize machine downtimes. Like 71.6 % of all German companies, P&G sees a huge potential for early information on their production system, but complains about the insufficient quality and the lack of currentness of data. The main research focus of this work lies on the human machine interface for all human tasks in a telemaintenance setup. This thesis provides own work in the use of a mobile device in context of maintenance, describes new tools on asynchronous remote analysis and puts all parts together in an integrated telemaintenance infrastructure. With the help of Augmented Reality, the user performance and satisfaction could be raised. A special regard is put upon the situation awareness of the remote expert realized by different camera viewpoints. In detail the work consists of: - Support of maintenance tasks with a mobile device - Development and evaluation of a context-aware inspection tool - Comparison of a new touch-based mobile robot programming device to the former teach pendant - Study on Augmented Reality support for repair tasks with a mobile device - Condition monitoring for a specific plant with industrial robot - Human computer interaction for remote analysis of a single plant cycle - A big data analysis tool for a multitude of cycles and similar plants - 3D process visualization for a specific plant cycle with additional virtual information - Network architecture in hardware, software and network infrastructure - Mobile device computer supported collaborative work for telemaintenance - Motor exchange telemaintenance example in running production environment - Augmented reality supported remote plant visualization for better situation awareness 2017 978-3-945459-18-8 urn:nbn:de:bvb:20-opus-150520 10.25972/OPUS-15052 Institut für Informatik