TY - JOUR A1 - Liao, Chunyu A1 - Ttofali, Fani A1 - Slotkowski, Rebecca A. A1 - Denny, Steven R. A1 - Cecil, Taylor D. A1 - Leenay, Ryan T. A1 - Keung, Albert J. A1 - Beisel, Chase L. T1 - Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis JF - Nature Communications N2 - CRISPR-Cas systems inherently multiplex through CRISPR arrays—whether to defend against different invaders or mediate multi-target editing, regulation, imaging, or sensing. However, arrays remain difficult to generate due to their reoccurring repeat sequences. Here, we report a modular, one-pot scheme called CRATES to construct CRISPR arrays and array libraries. CRATES allows assembly of repeat-spacer subunits using defined assembly junctions within the trimmed portion of spacers. Using CRATES, we construct arrays for the single-effector nucleases Cas9, Cas12a, and Cas13a that mediated multiplexed DNA/RNA cleavage and gene regulation in cell-free systems, bacteria, and yeast. CRATES further allows the one-pot construction of array libraries and composite arrays utilized by multiple Cas nucleases. Finally, array characterization reveals processing of extraneous CRISPR RNAs from Cas12a terminal repeats and sequence- and context-dependent loss of RNA-directed nuclease activity via global RNA structure formation. CRATES thus can facilitate diverse multiplexing applications and help identify factors impacting crRNA biogenesis. KW - biotechnology KW - CRISPR-Cas systems KW - microbiology KW - small RNAs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236843 VL - 10 ER -