TY - JOUR A1 - Gessler, Manfred A1 - Grupe, Andrew A1 - Grzeschik, Karl-Heinz A1 - Pongs, Olaf T1 - The potassium channel gene HK1 maps to human chromosome 11p14.1, close to the FSHB gene N2 - Transiently activating (A-type) potassium (K) channels are important regulators of action potential and action potential firing frequencies. HK1 designates the firsthuman cDNA that is highly homologous to the rat RCK4 cDNA that codes for an A-type K-channel. The HK1 channel is expressed in heart. By somatic cell hybrid analysis, the HK1 gene has been assigned to human chromosome 11p13-pl4, the WAGR deletion region (Wilms tumor, aniridia, genito-urinary abnormalities and mental retardation). Subsequent pulsed field gel (PFG) analysis and comparison with the well-established PFG map of this region localized the gene to 11p14, 200-600 kb telomeric to the FSHB gene. KW - Biochemie Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59184 ER - TY - JOUR A1 - Gessler, Manfred A1 - Hameister, H. A1 - Henry, I. A1 - Junien, C. A1 - Braun, T. A1 - Arnold, H. H. T1 - The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome N2 - The human gene encoding the myogenic determination factor myf3 (mouse MyoD1) has been mapped to the short arm of chromosome 11. Analysis of several somatic cell hybrids containing various derivatives with deletions or translocations revealed that the human MyoD (MYF3) gene is not associated with the WAGR locus at chromosomal band 11pl3 nor with the loss of the heterozygosity region at 11p15.5 related to the Beckwith-Wiedemann syndrome. Subregional mapping by in situ hybridization with an myf3 specific probe shows that the gene resides at the chromosomal band llp14, possibly at llp14.3. KW - Biochemie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59221 ER - TY - JOUR A1 - Gessler, Manfred A1 - König, A. A1 - Bruns, G. A. P. T1 - The genomic organization and expression of the WT1 gene N2 - The Wilms tumor gene WTl, a proposed tumor suppressor gene, has been identifled based on its location within a homozygous deletion found in tumor tissue. The gene encodes a putative transcription factor containing a Cys/His zinc finger domain. The critical homozygous deletions, however, are rarely seen, suggesting that in many cases the gene may be inactivated by more subtle alterations. To facilitate the seareh for smaller deletions and point mutations we have established the genomic organization of the WTl gene and have determined the sequence of all 10 exons and flanking intron DNA. The pattern of alternative splicing in two regions has been characterized in detail. These results will form the basis for future studies of mutant alleles at this locus. KW - Biochemie Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59195 ER - TY - JOUR A1 - van Heyningen, V. A1 - Bickmore, W. A. A1 - Seawright, A. A1 - Fletcher, J. M. A1 - Maule, J. A1 - Fekete, G. A1 - Gessler, Manfred A1 - Bruns, G. A. A1 - Huerre-Jeanpierre, C. A1 - Junien, C. T1 - Role for the Wilms tumor gene in genital development? N2 - No abstract available KW - Biochemie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59238 ER - TY - JOUR A1 - Henry, Isabelle A1 - Hoovers, Jan A1 - Barichard, Fernande A1 - Berthéas, Marie-Francoise A1 - Puech, Anne A1 - Prieur, Fabienne A1 - Gessler, Manfred A1 - Bruns, Gail A1 - Mannens, Marcel A1 - Junien, Claudine T1 - Pericentric intrachromosomal insertion responsible for recurrence of del(11)(p13p14) in a family N2 - The combined use of qualitative and quantitative analysis of I I p I 3 polymorphic markers tagether with chromosomal in situ suppression hybridization (CISS) with biotin labeled probes mapping to I I p allowed us to characterize a complex rearrangement segregating in a family. We detected a pericentric intrachromosomal insertion responsible (or recurrence of del( I I )(p 13p 14) in the family: an insertion of band I I p 13-p 14 carrying the genes for predisposition to Wilms' tumor, WT I, and for aniridia, AN2, into the long arm of chromosome I I in II q 13-q 1<4. Asymptomatic balanced carriers were observed over three generations. Classical cytogenetics had failed to detect this anomaly in the balanced carriers, who were first considered to be somatic mosaics for del( II )(p 13). Two of these women gave birth to children carrying a deleted chromosome II. most likely resulting from the loss of the I I p 13 band inserted in I I q. Although in both cases the deletion encompassed exactly the same maternally inherited markers, there was a wide Variation in clinical expression. One child, with the karyotype 46,XY,del(ll)(pllpl4), presented the full-blown WAGR syndrome with anlridia, mental retardation, Wilms' tumor, and pseudohermaphroditism, but also had proteinuria and glomerular sclerosis reminiscent of Drash syndrome. In contrast, the other one, a girl with the karyotype 46,XX,del( I I )(p I 3), only had aniridia. Although a specific set of mutational sites has been observed in Drash patients, these findings suggest that the loss of one copy of the WTI gene can result in similar genital and kidney abnormalities. KW - Biochemie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59157 ER - TY - JOUR A1 - Gessler, Manfred A1 - Bruns, Gail A. P. T1 - Molecular mapping and cloning of the breakpoints of a chromosome 11p14.1-p13 deletion associated with the AGR syndrome N2 - Chromosome 11p13 is frequently rearranged in individuals with the WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) or parts of this syndrome. To map the cytogenetic aberrations molecularly, we screened DNA from cell Unes with known WAGR-related chromosome abnormalities for rearrangements with pulsed fleld gel (PFG) analysis using probes deleted from one chromosome 11 homolog of a WAGR patient. The first alteration was detected in a cell line from an individual with aniridia, genitourinary anomalies, mental retardation, and a deletion described as 11p14.1-p13. We have located one breakpoint close to probe HU11-164B and we have cloned both breakpoint sites as well as the junctional fragment. The breakpoints subdivide current intervals on the genetic map, and the probes for both sides will serve as important additional markers for a long-range restriction map of this region. Further characterization and sequencing of the breakpoints may yield insight into the mechanisms by which these deletions occur. KW - Biochemie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59264 ER - TY - JOUR A1 - Wolf, Markus A1 - Klug, Jörg A1 - Hackenberg, Reinhard A1 - Gessler, Manfred A1 - Grzeschik, Karl-Heinz A1 - Beato, Miguel A1 - Suske, Guntram T1 - Human CC10, the homologue of rabbit uteroglobin: genomic cloning, chromosomal localization and expression in endometrial cell lines N2 - No abstract available KW - Biochemie Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59206 ER - TY - JOUR A1 - Gessler, Manfred A1 - Konig, Anja A1 - Moore, Jay A1 - Qualman, Steven A1 - Arden, Karen A1 - Cavenee, Webster A1 - Bruns, Gail T1 - Homozygous inactivation of WTI in a Wilms' tumor associated with the WAGR syndrome N2 - Wilms' tumor is a childhood nephroblastoma that is postulated to arise through the inactivation of a tumor suppressor gene by a two-hit mechanism. A candidate II p 13 Wilms' tumor gene, WTI, has been cloned and shown to encode a zinc finger protein. Patients with the WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation) have a high risk of developing Wilms' tumor and they carry constitutional deletions of one chromosome II allele encompassing the WTI gene. Analysis of the remaining WTI allele in a Wilms' tumor from a WAGR patient revealed the deletion of a single nucleotide in exon 7. This mutation likely played a key role in tumor formation, as it prevents translation of the DNA-binding zinc finger domain that is essential for the function of the WTI polypeptide as a transcriptional regulator. KW - Biochemie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59146 ER - TY - JOUR A1 - Konig, Anja A1 - Jakubiczka, Sybille A1 - Wieacker, Peter A1 - Schlösser, Hans W. A1 - Gessler, Manfred T1 - Further evidence that imbalance of WT1 isoforms may be involved in Denys-Drash syndrome N2 - No abstract available KW - Biochemie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59167 ER - TY - JOUR A1 - Poulat, F. A1 - Morin, D. A1 - Konig, A. A1 - Brun, P. A1 - Giltay, J. A1 - Sultan, C. A1 - Dumas, R. A1 - Gessler, Manfred A1 - Berta, P. T1 - Distinct molecular origins for Denys-Drash and Frasier syndromes N2 - The direct involvment of the Wilm's tumor suppressor gene (WTl) in Denys-Drash syndrome through mutations within exons 8 or 9 has recently been established. The absence of such alterations in three patients with Frasier syndrome provides a molecular basis for distinguishing these two syndromes that are associated with streak gonads, pseudohermaphroditism and renal failure. KW - Biochemie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59172 ER -