TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Lomb, Christian A1 - Sperling, Karl A1 - Neitzel, Heidemarie T1 - 5-Methylcytosine-Rich Heterochromatin in the Indian Muntjac JF - Cytogenetic and Genome Research N2 - Two 5-methylcytosine (5-MeC)-rich heterochromatic regions were demonstrated in metaphase chromosomes of the Indian muntjac by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. The metaphases were obtained from diploid and triploid cell lines. A major region is located in the ‘neck' of the 3;X fusion chromosome and can be detected after denaturation of the chromosomal DNA with UV-light irradiation for 1 h. It is located exactly at the border of the X chromosome and the translocated autosome 3. A minor region is found in the centromeric region of the free autosome 3 after denaturing the chromosomal DNA for 3 h or longer. The structure and possible function of the major hypermethylated region as barrier against spreading of the X-inactivation process into the autosome 3 is discussed. KW - heterochromatin KW - immunofluorescence KW - Indian muntjac KW - 5-Methylcytosine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196701 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 147 IS - 4 ER - TY - JOUR A1 - Matsuda, Yoichi A1 - Uno, Yoshinobu A1 - Kondo, Mariko A1 - Gilchrist, Michael J. A1 - Zorn, Aaron M. A1 - Rokhsar, Daniel S. A1 - Schmid, Michael A1 - Taira, Masanori T1 - A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis JF - Cytogenetic and Genome Research N2 - Xenopus laevis (XLA) is an allotetraploid species which appears to have undergone whole-genome duplication after the interspecific hybridization of 2 diploid species closely related to Silurana/Xenopus tropicalis (XTR). Previous cDNA fluorescence in situ hybridization (FISH) experiments have identified 9 sets of homoeologous chromosomes in X. laevis, in which 8 sets correspond to chromosomes 1-8 of X. tropicalis (XTR1-XTR8), and the last set corresponds to a fusion of XTR9 and XTR10. In addition, recent X. laevis genome sequencing and BAC-FISH experiments support this physiological relationship and show no gross chromosome translocation in the X. laevis karyotype. Therefore, for the benefit of both comparative cytogenetics and genome research, we here propose a new chromosome nomenclature for X. laevis based on the phylogenetic relationship and chromosome length, i.e. XLA1L, XLA1S, XLA2L, XLA2S, and so on, in which the numbering of XLA chromosomes corresponds to that in X. tropicalis and the postfixes ‘L' and ‘S' stand for ‘long' and ‘short' chromosomes in the homoeologous pairs, which can be distinguished cytologically by their relative size. The last chromosome set is named XLA9L and XLA9S, in which XLA9 corresponds to both XTR9 and XTR10, and hence, to emphasize the phylogenetic relationship to X. tropicalis, XLA9_10L and XLA9_10S are also used as synonyms. KW - BrdU replication banding pattern KW - homoeologous chromosomes KW - nomenclature KW - Xenopus laevis KW - Xenopus tropicalis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196748 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 145 IS - 3-4 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Feichtinger, Wolfgang A1 - Bogart, James P. T1 - Chromosome Banding in Amphibia. XXXI. The Neotropical Anuran Families Centrolenidae and Allophrynidae JF - Cytogenetic and Genome Research N2 - The mitotic chromosomes of 11 species from the anuran families Centrolenidae and Allophrynidae were analyzed by means of conventional staining, banding techniques, and in situ hybridization. The amount, location, and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes were found to be highly conserved with a low diploid chromosome number of 2n = 20 and morphologically similar chromosomes. The sister group relationship between the Centrolenidae and Allophrynidae (unranked taxon Allocentroleniae) is clearly corroborated by the cytogenetic data. The existence of heteromorphic XY♂/XX♀ sex chromosomes in an initial stage of morphological differentiation was confirmed in Vitreorana antisthenesi. The genome sizes of 4 centrolenid species were determined using flow cytometry. For completeness and for comparative purposes, all previously published cytogenetic data on centrolenids are included. KW - Allophrynidae KW - Anura KW - chromosome evolution KW - sex chromosomes KW - Centrolenidae Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196763 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 142 IS - 4 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus T1 - Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae) JF - Cytogenetic and Genome Research N2 - Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species. KW - X. laevis-type karyotype KW - X. tropicalis-type karyotype KW - BrdU/dT replication banding KW - chromosome staining KW - FISH KW - polyploidy KW - Xenopus Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196727 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 145 IS - 3-4 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus T1 - Chromosome Banding in Amphibia. XXXIII. Demonstration of 5-Methylcytosine-Rich Heterochromatin in Anura JF - Cytogenetic and Genome Research N2 - An experimental approach using monoclonal anti-5-methylcytosine (5-MeC) antibodies and indirect immunofluorescence was elaborated for detecting 5-MeC-rich chromosome regions in anuran chromosomes. This technique was applied to mitotic metaphases of 6 neotropical frog species belonging to 6 genera and 4 families. The hypermethylation patterns were compared with a variety of banding patterns obtained by conventional banding techniques. The hypermethylated DNA sequences are species-specific and located exclusively in constitutive heterochromatin. They are found in centromeric, pericentromeric, telomeric, and interstitial positions of the chromosomes and adjacent to nucleolus organizer regions. 5-MeC-rich DNA sequences can be embedded both in AT- and GC-rich repetitive DNA. The experimental parameters that have major influence on the reproducibility and quality of the anti-5-MeC antibody labeling are discussed. KW - Anura KW - heterochromatin KW - hypermethylated DNA KW - immunofluorescence KW - 5-Methylcytosine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199022 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 148 IS - 1 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus T1 - Chromosome Banding in Amphibia. XXXIV. Intrachromosomal Telomeric DNA Sequences in Anura JF - Cytogenetic and Genome Research N2 - The mitotic chromosomes of 4 anuran species were examined by various classical banding techniques and by fluorescence in situ hybridization using a (TTAGGG)\(_n\) repeat. Large intrachromosomal telomeric sequences (ITSs) were demonstrated in differing numbers and chromosome locations. A detailed comparison of the present results with numerous published and unpublished data allowed a consistent classification of the various categories of large ITSs present in the genomes of anurans and other vertebrates. The classification takes into consideration the total numbers of large ITSs in the karyotypes, their chromosomal locations and their specific distribution patterns. A new category of large ITSs was recognized to exist in anuran species. It consists of large clusters of ITSs located in euchromatic chromosome segments, which is in clear contrast to the large ITSs in heterochromatic chromosome regions known in vertebrates. The origin of the different categories of large ITSs in heterochromatic and euchromatic chromosome regions, their mode of distribution in the karyotypes and evolutionary fixation in the genomes, as well as their cytological detection are discussed. KW - heterochromatin KW - intrachromosomal telomeric sequences KW - Anura KW - euchromatin KW - evolutionary fixation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196693 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 148 IS - 2-3 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Feichtinger, Wolfgang A1 - Haaf, Thomas A1 - Mijares-Urrutia, Abraham A1 - Schargel, Walter E. A1 - Hedges, S. Blair T1 - Cytogenetic Studies on Gonatodes (Reptilia, Squamata, Sphaerodactylidae) JF - Cytogenetic and Genome Research N2 - Mitotic and meiotic chromosomes of 5 species of the reptile genus Gonatodes are described by means of conventional staining, banding analyses and in situ hybridization using a synthetic telomeric DNA probe. The amount, location and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes of G. falconensis and G. taniae from northern Venezuela are distinguished by their extraordinarily reduced diploid chromosome number of 2n = 16, which is the lowest value found so far in reptiles. In contrast to most other reptiles, both species have exclusively large biarmed (meta- and submetacentric) chromosomes. Comparison of the karyotypes of G. falconensis and G. taniae with those of other Gonatodes species indicates that the exceptional 2n = 16 karyotype originated by a series of 8 centric fusions. The karyotypes of G. falconensis and G. taniae are further characterized by the presence of considerable amounts of (TTAGGG)n telomeric sequences in the centromeric regions of all chromosomes. These are probably not only relics of the centric fusion events, but a component of the highly repetitive DNA in the constitutive heterochromatin of the chromosomes. The genome sizes of 4 Gonatodes species were determined using flow cytometry. For comparative purposes, all previously published cytogenetic data on Gonatodes and other sphaerodactylids are included and discussed. KW - banding analyses KW - FISH KW - geckos KW - karyotype evolution KW - meiotic chromosomes KW - mitotic chromosomes Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196753 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 144 IS - 1 ER - TY - JOUR A1 - Nanda, Indrajit A1 - Schartl, Manfred A1 - Feichtinger, Wolfgang A1 - Epplen, Jörg T. A1 - Schmid, Michael T1 - Early stages of sex chromosome differentiation in fish as analysed by simple repetitive DNA sequences N2 - Animal sex chromosome evolution has started on different occasions with a homologous pair of autosomes leading to morphologically differentiated gonosomes. In contrast to other vertebrate classes, among fishes cytologically dernonstrahle sex chromosomes are rare. In reptiles, certain motifs of simple tandemly repeated DNA sequences like (gata)\(_n\)/(gaca)\(_m\) are associated with the constitutive heterochromatin of sex chromosomes. In this study a panel of simple repetitive sequence probes was hybridized to restriction enzyme digested genomic DNA of poeciliid fishes. Apparent male heterogamety previously established by genetic experiments in Poecilia reticulata (guppy) was correlated with male-specific hybridization using the (GACA)\(_4\) probe. The (GATA)\(_4\) oligonucleotide identifies certain male guppies by a Y chromosomal polymorphism in the outbred population. In cantrast none of the genetically defined heterogametic situations in Xiphophorus could be verified consistently using the collection of simple repetitive sequence probes. Only individuals from particular populations produced sex-specific patterns of hybridization with (GATA)\(_4\). Additional poeciliid species (P. sphenops, P. velifera) harbour different sex-specifically organized simple repeat motifs. The observed sex-specific hybridization patterns were substantiated by banding analyses of the karyotypes and by in situ hybridization using the (GACA)\(_4\) probe. KW - Physiologische Chemie Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61715 ER - TY - JOUR A1 - Schartl, Manfred A1 - Nanda, Indrajit A1 - Schlupp, Ingo A1 - Parzefall, Jakob A1 - Schmid, Michael A1 - Epplen, Jörg T. T1 - Genetic variation in the clonal vertebrate Poecilia formosa is limited to few truly hypervariable loci N2 - No abstract available. KW - Amazon Molly Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86359 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Yano, Cassia F. A1 - Cioffi, Marcelo B. T1 - Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes JF - Cytogenetic and Genome Research N2 - Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes. KW - heterochromatin KW - heteromorphic sex chromosomes KW - hypermethylation KW - immunofluorescence KW - 5-Methylcytosine KW - fish Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196710 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 147 IS - 2-3 ER -