TY - THES A1 - Fetsch, Corinna T1 - Polypeptoide - Synthese und Charakterisierung T1 - Polypeptoids - Synthesis and characterization N2 - Die vorliegende Arbeit befasste sich mit der bisher relativ unbekannten Polymerklasse der Polypeptoide, die hinsichtlich ihrer Verwendung als Biomaterial näher untersucht werden sollte. Hierbei war die Untersuchung des Polymerisationssystems ein wesentlicher Schwerpunkt. Dies beinhaltete zum einen die Synthesen verschiedener Monomere sowie deren Polymerisationskinetiken und zum anderen Studien über die Stabilität des aktiven Kettenendes. Um mehr über die Polypeptoide zu erfahren, wurden die erhaltenen Homopolymere nach der Strukturanalyse hinsichtlich ihrer physikochemischen Eigen-schaften untersucht. Im Anschluss erfolgte die Synthese von (amphiphilen) Blockco-polypeptoiden, die sich in wässrigen Lösungen zu definierten Morphologien zusammen-lagern. Die resultierenden Morphologien, sowohl mizellare als auch vesikuläre Strukturen, wurden mit verschiedenen Methoden, wie z. B. der Pyren-Fluoreszenz-Spektroskpie und der dynamischen Lichtstreuung, untersucht. Erste Erkenntnisse über die Biokompatibilität der Polypeptoide sollte die Bestimmung der Zellviabilität in verschiedenen Polymerlösungen liefern. Die verschiedenen Studien über die Polypeptoide zeigten, dass diese Polymerklasse über eine besonders lebende Polymerisation synthetisiert werden kann. Dabei resultieren Produkte, die sich durch eine Poisson-Verteilung und eine hohe Endgruppengenauigkeit auszeichnen. Zusätzlich bestehen Polypeptoide aus einem abbaubaren Rückgrat und, im Vergleich zu den Polypeptiden, besitzen sie eine erhöhte proteolytische Stabilität. Amphiphile Blockcopolypeptoide sind zudem in der Lage, sich in Lösung zu verschiedenen Morphologien anzuordnen. Durch die Variierung der Seitenkette und des f kann sowohl die Selbstorganisation als auch das Mikroumfeld der Aggregate abgestimmt werden. Darüber hinaus können die amphiphile Blockcopolymere, die sich zu Mizellen anordnen, hydrophobe Substanzen solubilisieren. Polypeptoide liefern all die nötige chemische Vielseitigkeit und potentielle Biokompatibilität, um bestehende sowie neuartige Probleme in biomedizinischen Anwendungen zu bewältigen. Zukünftige in vivo und in vitro Test werden das Potential, aber auch die Grenzen dieser neuen Polymerklasse als Biomaterial zeigen. N2 - The present work focused on the synthesis and characterization of the relatively unknown polymer class polypeptoids and their potential as a biomaterial. In detail, the syntheses of different monomers and their polymerization kinetics as well as studies on the stability of the active chain end were investigated. Furthermore, the physicochemical properties with respect to the polymer structure were analyzed by a series of homo- and block copolymers. The self-assembly of amphiphilic block copolypeptoids in aqueous solution resulted in micellar as well as vesicular structures, which were studied meticulously by various methods such as pyrene fluorescence spectroscopy and dynamic light scattering. First results about the biocompatibility of the polypeptoids was gained by cell viability assay. The various studies on the polypeptoids showed that this polymer class is accessible through an extraordinary living polymerization. The obtained products are characterized by a Poisson distribution and a high end-group fidelity. Additionally, polypeptoids consist of a degradable backbone and feature enhanced proteolytic stability in contrast to polypeptides. Moreover, amphiphilic block copolypeptoids are able to assemble in aqueous solution into different morphologies. By variation of the side chain and f the self-assembly as well as the microenvironment of the aggregates can be fine-tuned. In addition, amphiphilic block copolymers which formed micelles are able to solubilize hydrophobic compounds. In summary, the polypeptoids provide all the chemical versatility and potentially biocompatibility necessary to overcome existing as well as novel problems in biomedical applications. Future in vivo and in vitro tests will show the potential, but also limits of this new polymer class as a biomaterial. KW - Polymerisation KW - Lichtstreuung KW - Selbstorganisation KW - Ringöffnungspolymerisation KW - Polypeptoid KW - self-assembly KW - light scattering KW - N-Carboxyanhydride KW - ring-opening polymerization KW - Peptoide KW - Biomaterial Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109157 ER - TY - THES A1 - Huber, Valerie T1 - Selbstorganisation von semisynthetischen Zinkchlorinen zu biomimetischen Lichtsammelsystemen und definierten Nanostrukturen T1 - Self-Assembly of Semi-Synthetic Zinc Chlorins into Biomimetic Light-Harvesting Systems and Defined Nanostructures N2 - Diese Arbeit beschäftigt sich mit der Selbstorganisation von Zinkchlorin-Farbstoffen, welche sich strukturell von Chlorophyllen ableiten. Im Gegensatz zu allen anderen bakteriellen und pflanzlichen Lichtsammelpigmenten ist es den Bakteriochlorophyllen c, d und e der Lichtsammelsysteme grüner phototropher Bakterien möglich, allein durch nichtkovalente Wechselwirkungen zwischen den Farbstoff-Molekülen, ohne die Beteiligung von Proteinen, röhrenförmige Antennensysteme auszubilden, welche die am dichtest gepackten und effizientesten Lichtsammelsysteme in der Natur darstellen. Um einen Betrag zur Aufklärung dieser biologisch wichtigen Aggregate zu leisten, wurden im ersten Teil dieser Arbeit Zinkchlorine als Modellverbindungen für BChl c hergestellt. Mit den neu synthetisierten Zinkchlorinen ist es gelungen, Modellsysteme der natürlichen BChl-Selbstorganisate herzustellen, welche sich im Gegensatz zu den bisher in der Literatur beschriebenen Zinkchlorin-Aggregaten durch eine gute und dauerhafte Löslichkeit auszeichnen. Diese Eigenschaft erlaubte es sowohl spektroskopische als auch mikroskopische Untersuchungen zur Aufklärung der Aggregatstruktur durchzuführen. Durch Rasterkraftmikroskopie an den Zinkchlorin Aggregaten konnte erstmals ein mikroskopischer Beweis der stabförmigen Struktur von Aggregaten dieser Substanzklasse erhalten werden. Der zweite Teil dieser Arbeit beschäftigt sich mit Zinkchlorinen, denen aufgrund einer methylierten 31-Hydroxy-Gruppe die Fähigkeit zur Röhrenbildung fehlt, die aber durch Koordinationsbindungen und p-p-Wechselwirkungen weiterhin Stapel bilden können. Temperaturabhängige UV/Vis- und CD-spektroskopische Studien offenbarten die reversible Bildung von löslichen, chiralen Zinkchlorin-Stapelaggregaten. Rasterkraft- und rastertunnelmikroskopische Untersuchungen zeigen die Bildung von zwei Typen p-gestapelter Aggregate auf hoch geordnetem Graphit. N2 - This work deals with the self-assembly of zinc chlorin dyes, which are structurally derived from chlorophylls. In contrast to all other bacterial and herbal light-harvesting pigments, the bacteriochlorophylls c, d and e of green phototropic bacteria are able to build tubular antennae solely by noncovalent interactions between the dye molecules, without any involvement of proteins, which represent the most densely packed and efficient light-harvesting systems in nature. To contribute to the structural elucidation of this biologically important aggregates, in the first part of this work zinc chlorins were synthesized as model compounds for BChl c. With the newly synthesized zinc chlorins it was possible to build model systems of the natural BChl self-assemblies that are, in contrast to literature known zinc chlorin aggregates, characterized by a proficient and durable solubility. This favourable property allows spectroscopic as well as microscopic investigations for the elucidation of the aggregate structure. Atomic force microscopy of the aggregates provided by the first time also a microscopic evidence for the rod-shaped structure of the aggregates of this class of substances. The second part of this work deals with the zinc chlorins, which lack the possibility of forming tubular aggregates because of a methylated 31-hydroxy group, but they may still form stacks by coordinative bonds and p-p interactions. Temperature-dependent UV/Vis and CD spectroscopic studies bare the reversible formation of soluble and chiral stacked aggregates of zinc chlorins. Atomic force and scanning tunnelling microscopic studies show the formation of two different types of p-stacked aggregates on highly ordered graphite surface. KW - Farbstoff KW - Scheibe-Aggregat KW - Chlorophyllderivate KW - Selbstorganisation KW - Bakteriochlorophyll KW - Kraftmikroskopie KW - Rastertunnelmikroskopie KW - aggregation KW - chlorophyll KW - dyes KW - self-assembly KW - zinc chlorins. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24517 ER -