TY - JOUR A1 - Brenner, Daniela A1 - Geiger, Nina A1 - Schlegel, Jan A1 - Diesendorf, Viktoria A1 - Kersting, Louise A1 - Fink, Julian A1 - Stelz, Linda A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Bodem, Jochen A1 - Seibel, Jürgen T1 - Azido-ceramides, a tool to analyse SARS-CoV-2 replication and inhibition — SARS-CoV-2 is inhibited by ceramides JF - International Journal of Molecular Sciences N2 - Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication. KW - ceramides KW - SARS-CoV-2 KW - azido-ceramides KW - sphingolipids Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313581 SN - 1422-0067 VL - 24 IS - 8 ER - TY - THES A1 - Seitz, Florian T1 - Synthesis, enzymatic recognition and antiviral properties of modified purine nucleosides T1 - Synthese, enzymatische Erkennung und antivirale Eigenschaften modifizierter Purin-Nukleoside N2 - Beyond the four canonical nucleosides as primary building blocks of RNA, posttranscriptional modifications give rise to the epitranscriptome as a second layer of genetic information. In eukaryotic mRNA, the most abundant posttranscriptional modification is N6-methyladenosine (m6A), which is involved in the regulation of cellular processes. Throughout this thesis, the concept of atomic mutagenesis was employed to gain novel mechanistic insights into the substrate recognition by human m6A reader proteins as well as in the oxidative m6A demethylation by human demethylase enzymes. Non-natural m6A atomic mutants featuring distinct steric and electronic properties were synthesized and incorporated into RNA oligonucleotides. Fluorescence anisotropy measurements using these modified oligonucleotides revealed the impact of the atomic mutagenesis on the molecular recognition by the human m6A readers YTHDF2, YTHDC1 and YTHDC2 and allowed to draw conclusions about structural prerequisites for substrate recognition. Furthermore, substrate recognition and demethylation mechanism of the human m6A demethylase enzymes FTO and ALKBH5 were analyzed by HPLC-MS and PAGE-based assays using the modified oligonucleotides synthesized in this work. Modified nucleosides not only expand the genetic alphabet, but are also extensively researched as drug candidates. In this thesis, the antiviral mechanism of the anti-SARS-CoV-2 drug remdesivir was investigated, which causes delayed stalling of the viral RNA-dependent RNA polymerase (RdRp). Novel remdesivir phosphoramidite building blocks were synthesized and used to construct defined RNA-RdRp complexes for subsequent studies by cryogenic electron microscopy (cryo-EM). It was found that the 1'-cyano substituent causes Rem to act as a steric barrier of RdRp translocation. Since this translocation barrier can eventually be overcome by the polymerase, novel derivatives of Rem with potentially improved antiviral properties were designed. N2 - Über die vier kanonischen Nukleoside als primäre RNA-Bausteine hinausgehend bauen posttranskriptionelle Modifikationen eine zweite Informationsebene, das Epitranskriptom, auf. Die häufigste posttranskriptionelle Modifikation in eukaryotischer mRNA ist N6-Methyladenosin (m6A), welches in die Regulierung zellulärer Prozesse involviert ist. In dieser Arbeit wurde das Konzept der atomaren Mutagenese genutzt, um neue Einblicke in die Erkennung von m6A durch menschliche m6A-bindende Proteine sowie in die oxidative Demethylierung von m6A durch menschliche Demethylase-Enzyme zu gewinnen. Es wurden nicht natürlich vorkommende m6A Atommutanten mit unterschiedlichen elektronischen und sterischen Eigenschaften synthetisiert und in RNA-Oligonukleotide eingebaut. Durch Fluoreszenzanisotropie-Messungen mit diesen Oligonukleotiden wurde der Einfluss der Atommutagenese auf die molekulare Erkennung durch die menschlichen m6A-bindenden Proteine YTHDF2, YTHDC1 und YTHDC2 untersucht. Die erhaltenen Ergebnisse ließen Rückschlüsse auf die strukturellen Voraussetzungen für die Erkennung eines Substrates zu. Weiterhin wurden die in dieser Arbeit synthetisierten modifizierten Oligonukleotide zur Untersuchung von Substraterkennung und Demethylierungs-Mechanismus der menschlichen m6A-Demethylasen FTO und ALKBH5 mittels HPLC-MS- und PAGE-basierter Analysen verwendet. Modifizierte Nukleoside dienen nicht nur zur Erweiterung des genetischen Alphabets, sondern werden auch als potentielle Wirkstoff-Kandidaten erforscht. In dieser Arbeit wurde der antivirale Wirkmechanismus des Anti-SARS-CoV-2-Wirkstoffes Remdesivir untersucht, der eine verzögerte Blockade der viralen RNA-abhängigen RNA-Polymerase (RdRp) bewirkt. Neuartige Remdesivir Phosphoramidit-Bausteine wurden synthetisiert und genutzt, um RNA-RdRp-Komplexe mit definierter Struktur zu konstruieren, welche anschließend mittels Cryoelektronenmikroskopie (Cryo-EM) untersucht wurden. Es wurde herausgefunden, dass der 1'-Cyano-Substituent dazu führt, dass Rem als sterische Blockade der RdRp-Translokation agiert. Da diese Tranlokationsbarriere von der Polymerase überwunden werden kann, wurden neuartige Rem-Derivate mit potentiell verbesserten antiviralen Eigenschaften entworfen. KW - Nucleinsäuren KW - Nucleoside KW - Demethylierung KW - COVID-19 KW - SARS-CoV-2 KW - Demethylase KW - Epitranskriptom Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313238 ER - TY - JOUR A1 - Geiger, Nina A1 - Kersting, Louise A1 - Schlegel, Jan A1 - Stelz, Linda A1 - Fähr, Sofie A1 - Diesendorf, Viktoria A1 - Roll, Valeria A1 - Sostmann, Marie A1 - König, Eva-Maria A1 - Reinhard, Sebastian A1 - Brenner, Daniela A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Seibel, Jürgen A1 - Bodem, Jochen T1 - The acid ceramidase is a SARS-CoV-2 host factor JF - Cells N2 - SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2–RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor. KW - SARS-CoV-2 KW - ceramides KW - ceramidase KW - fluoxetine KW - acid sphingomyelinase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286105 SN - 2073-4409 VL - 11 IS - 16 ER - TY - THES A1 - Stiller, Carina T1 - Synthesis and applications of modified nucleosides and RNA nucleotides T1 - Synthese und Anwendungen von modifizierten Nukleosiden und RNA-Nukleotiden N2 - As central components of life, DNA and RNA encode the genetic information. However, RNA performs several functions that exceed the competences stated in the ‘central dogma of life‘. RNAs undergo extensive post-transcriptional processing like chemical modifications. Among all classes of RNA, tRNAs are the most extensively modified. Their modifications are chemically diverse and vary from simple methylations (e.g. m3C, m6A) to more complex residues, like isopentenyl group (e.g. i6A, hypermodifications: e.g. ms2i6A) or even amino acids (e.g. t6A). Depending on their location within the overall structure, modifications can have an impact on tRNA stability and structure, as well as affinity for the ribosome and translation efficiency and fidelity. Given the importance of tRNA modifications new tools are needed for their detection and to study their recognition by proteins and enzymatic transformations. The chemical synthesis of these naturally occurring tRNA modifications as phosphoramidite building blocks is a prerequisite to incorporate the desired modification via solid-phase synthesis into oligonucleotides. With the help of the m3C, (ms2)i6A, and t6A oligonucleotides, the importance and impact of tRNA modifications was investigated in this thesis. To this end, the role of METTL8 as the methyltransferase responsible for the installation of the methyl group at C32 for mt-tRNAThr and mt-tRNASer(UCN) was resolved. Thereby, the respective adenosine modification on position 37 is essential for the effectiveness of the enzyme. Besides, by means of NMR analysis, CD spectroscopy, thermal denaturation experiments, and native page separation, the impact of m3C32 on the structure of the tRNA ASLs was shown. The modification appeared to fine-tune the tRNA structure to optimize mitochondrial translation. To investigate the regulation of the dynamic modification pathway of m3C, demethylation assays were performed with the modified tRNA-ASLs and the (α-KG)- and Fe(II)-dependent dioxygenase ALKBH1 and ALKHB3. A demethylation activity of ALKBH3 on the mt-tRNAs was observed, even though it has so far only been described as a cytoplasmic enzyme. Whether this is physiologically relevant and ALKBH3 present a mitochondrial localization needs further validation. In addition, ALKBH1 was confirmed to not be able to demethylate m3C on mt-tRNAs, but indications for a deprenylation and exonuclease activity were found. Furthermore, the aforementioned naturally occurring modifications were utilized to find analytical tools that can determine the modification levels by DNAzymes, which cleave RNA in the presence of a specific modification. Selective DNA enzymes for i6A, as well as the three cytidine isomers m3C, m4C, and m5C have been identified and characterized. Besides the naturally occurring tRNA modifications, the investigation on artificially modified nucleosides is also part of this thesis. Nucleosides with specific properties for desired applications can be created by modifying the scaffold of native nucleosides. During the pandemic, the potential of antiviral nucleoside analogues was highlighted for the treatment of the SARS-CoV-2 infection. For examinations of the potential drug-candidate Molnupiravir, the N4-hydroxycytidine phosphoramidite building block was synthesized and incorporated into several RNA oligonucleotides. A two-step model for the NHC-induced mutagenesis of SARS-CoV-2 was proposed based on RNA elongation, thermal denaturation, and cryo-EM experiments using the modified RNA strands with the recombinant SARS-CoV-2 RNA-dependent RNA polymerase. Two tautomeric forms of NHC enable base pairing with guanosine in the amino and with adenosine in the imino form, leading to error catastrophe after the incorporation into viral RNA. These findings were further corroborated by thermal melting curve analysis and NMR spectroscopy of the NHC-containing Dickerson Drew sequence. In conclusion, the anti-amino form in the NHC-G base pair was assigned by NMR analysis using a 15N-labeld NHC building block incorporated into the Dickerson Drew sequence. This thesis also addressed the synthesis of a 7-deazaguanosine crosslinker with a masked aldehyde as a diol linker for investigations of DNA-protein interactions. The diol functional group can be unmasked to release the reactive aldehyde, which can specifically form a covalent bond with amino acids Lys or Arg within the protein complex condensin. The incorporation of the synthesized phosphoramidite and triphosphate building blocks were shown and the functionality of the PCR product containing the crosslinker was demonstrated by oxidation and the formation of a covalent bond with a fluorescein label. The development of assays that detect changes in this methylation pattern of m6A could provide new insights into important biological processes. In the last project of this thesis, the influence of RNA methylation states on the structural properties of RNA was analyzed and a fluorescent nucleoside analog (8-vinyladenosine) as molecular tools for such assays was developed. Initial experiments with the fluorescent nucleoside analog N6-methyl-8-vinyladenosine (m6v8A) were performed and revealed a strong fluorescence enhancement of the free m6v8A nucleoside by the installation of the vinyl moiety at position 8. Overall, this thesis contributes to various research topics regarding the application of naturally occurring and artificial nucleoside analogues. Starting with the chemical synthesis of RNA and DNA modifications, this thesis has unveiled several open questions regarding the dynamic (de-)methylation pathway of m3C and the mechanism of action of molnupiravir through in-depth analysis and provided the basis for further investigations of the protein complex condensin, and a new fluorescent nucleoside analog m6v8A. N2 - Als zentrale Bestandteile des Lebens kodieren DNA und RNA die genetische Information. Die RNA erfüllt jedoch noch mehr Funktionen, die über die im 'zentralen Dogma des Lebens' ge-nannten Kompetenzen hinausreichen. RNA Stränge werden posttranskriptionell verändert, wie zum Beispiel durch chemische Modifikationen. tRNAs sind unter allen RNA-Klassen am umfangreichsten und chemisch vielfältigsten modifiziert. Ihre Modifikationen reichen von ein-fachen Methylierungen (z. B. m3C oder m6A) bis hin zu komplexeren Resten, wie einer Iso-pentenyl-Gruppe (i6A, Hypermodifikation: z. B. ms2i6A) oder sogar Aminosäuren (t6A). Ab-hängig von ihrer Position innerhalb der tRNA können Modifikationen Einfluss auf die tRNA Stabilität und Struktur, sowie die Affinität zu den Ribosomen und die Translationseffizienz und Genauigkeit, haben. Angesichts dieser Bedeutung von tRNA-Modifikationen werden zum einen Nachweisemethoden zur Detektion von Modifikationen, als auch Werkzeuge zur Unter-suchung der Erkennungsmechanismen spezifischer Proteine und deren enzymatischer Funk-tionalisierung benötigt. Dabei ist die chemische Synthese dieser natürlichen Modifikationen als Phosphoramidit-Bausteine die Voraussetzung, um die gewünschte Modifikation überhaupt erst über Festpha-sensynthese in Oligonukleotide einbauen zu können. Mit Hilfe der m3C-, (ms2)i6A- und t6A-modifizierten Oligonukleotide wurde die Bedeutung dieser tRNA-Modifikationen für die Struk-tur und Funktionalität des jeweiligen tRNA Anticodon-Loops (ACL) untersucht. Ein Kapitel dieser Arbeit klärte die tatsächliche Rolle von METTL8 auf. Als Methyltransferase ist das Protein für den Einbau der Methylgruppe an C32 in den mitochondrialen tRNAThr und tRNASer(UCN) verantwortlich, kann dies aber nur bewerkstelligen, wenn zuvor bereits eine ent-sprechende Adenosin-Modifikation an A37 installiert wurde. Außerdem wurde mittels NMR-Analyse, CD-Spektroskopie, Schmelzkurvenanalysen und Gelelektrophorese der Einfluss von m3C32 auf die Struktur der tRNA Anticodon-Stem-Loops (ASLs) gezeigt. Die Modifikation scheint die tRNA-Struktur anzupassen, um die mitochondriale Translation zu optimieren. Um herauszufinden, wie die dynamischen Modifikationswege von m3C reguliert werden, wurden mit den modifizierten tRNA-ASLs und den (α-KG)- und Fe(II)-abhängigen Dio-xygenasen ALKBH1 und ALKHB3 Demethylierungsassays durchgeführt. Obwohl ALKBH3 bisher nur als cytoplasmatisches Enzym bekannt war, konnte es mt-tRNAs demethylieren. Inwiefern diese Aktivität physiologisch relevant ist und ob ALKBH3 vielleicht zusätzlich auch eine mitochond-riale Lokalisierung aufweist, muss noch weiter untersucht werden. Zudem wurde gezeigt, dass ALKBH1 m3C32-modifizierte mt-tRNAs nicht demethylieren kann, es jedoch Hinweise darauf gibt, dass ALKBH1 zusätzlich zu der bereits beschriebenen Aktivität der Oxidation von m5C zu f5C in mitochondrialer tRNAMet eine noch näher zu untersuchende Deprenylierungs- und Exonuklease-Aktivität besitzt. Außerdem wurden die zuvor erwähnten natürlichen Modifikationen verwendet, um DNA-Enzyme als analytische Werkzeuge zur Bestimmung des Modifikationsgrades zu finden. Die Enzyme katalysieren die Spaltung von RNA, falls eine spezielle Modifikation vorhanden ist. Es wurden selektive DNA-Enzyme für i6A sowie die drei Cytidin-Isomere m3C, m4C und m5C identifiziert und charakterisiert. Neben den posttranskriptionalen Modifikationen war auch die Untersuchung künstlich modifi-zierter Nukleoside ein Teil dieser Arbeit. Das Gerüst nativer Nukleoside kann so modifiziert werden, dass die Nukleoside spezifischen Eigenschaften für die gewünschte Anwendung erhalten. Während der Pandemie wurde antiviralen Nukleosidanaloga zur Behandlung der SARS-CoV-2-Infektion eine große Bedeutung zugeschrieben. Um den potenziellen Arzneimittelkandidaten Molnupiravir zu untersuchen, wurde N4-Hydroxycytidin als Phosphoramidit-Baustein syntheti-siert und in mehrere RNA-Oligonukleotide mittels Festphasensynthese eingebaut. Basierend auf den Ergebnissen von RNA-Elongations-, thermischen Denaturierungs- und Cryo-EM-Experimenten, bei denen die modifizierten RNA-Stränge und die rekombinante SARS-CoV-2-RNA-abhängige RNA-Polymerase verwendet wurde, wurde ein zweistufiges Modell für die NHC-induzierte Mutagenese von SARS-CoV-2 postuliert. Dieser Mechanismus wird durch die zwei tautomeren Formen von NHC ermöglicht, wobei die Amino-Form ein Basenpaar mit Guanosin bildet und die Imino-Form mit Adenosin basenpaaren kann. Nach dem Einbau in die virale RNA kommt es zu Mutationen und zur sogenannten Fehlerkatastrophe. Diese Er-kenntnisse wurden durch thermische Schmelzkurvenanalyse und NMR-Spektroskopie der NHC-haltigen Dickerson Drew Sequenz ergänzt. Mit Hilfe eines 15N-markierten NHC-Bausteins, der in die Dickerson Drew Sequenz eingebaut wurde, konnte schließlich die Anti-Amino Form in dem NHC-G Basenpaar durch NMR-Analyse eindeutig nachgewiesen wer-den. Ein weiteres Forschungsprojekt dieser Arbeit befasste sich mit der Synthese eines 7-Deazaguanosin-Crosslinkers, welcher einen geschützten Aldehyd als Diol-Linker enthielt. Die-ser Crosslinker sollte zur Untersuchung von DNA-Protein-Interaktionen dienen. Der Einbau der synthetisierten Phosphoramidit- und Triphosphat-Bausteine konnte erfolgreich durchge-führt werden und die Funktionalität des PCR-Produktes, welches den Crosslinker enthielt, wurde durch Oxidation und die Bildung einer kovalenten Bindung mit einem Fluorescein-Label demonstriert. Der letzte Teil dieser Arbeit beschäftigte sich mit der der Entwicklung eines Assays, um Ver-änderungen im Methylierungslevel von m6A nachweisen zu können. Dies könnte neue Einbli-cke in wichtige biologische Prozesse liefern. Daher wurde im letzten Projekt der Einfluss von RNA-Methylierungszuständen auf die strukturellen Eigenschaften von RNA untersucht und dafür ein fluoreszierendes Nukleosidanalog (8-Vinyladenosin) als molekulares Werkzeug ent-wickelt. Die ersten Experimente mit dem Nukleosidanalog N6-Methyl-8-Vinyladenosin (m6v8A) zeigten einen deutlichen Fluoreszenzanstieg durch den Einbau der Vinyleinheit an Position 8 im Vergleich zu dem nicht fluoreszierenden m6A. Insgesamt trägt diese Arbeit zu verschiedenen Forschungsthemen bezüglich der Anwendung von natürlich vorkommenden und künstlichen Nukleosidanaloga bei. Ausgehend von der chemischen Synthese von RNA- und DNA-Modifikationen hat diese Arbeit durch eingehende Analysen mehrere offene Fragestellungen zum dynamischen (De-)Methylierungsweg von m3C und zum Wirkmechanismus von Molnupiravir aufgedeckt und die Grundlage für weitere Untersuchungen des Proteinkomplexes Condensin und eines neuen fluoreszierenden Nukle-osidanalogons m6v8A geschaffen. KW - Nucleinsäuren KW - Chemische Synthese KW - SARS-CoV-2 KW - Oligonucleotide KW - Festphasensynthese KW - Crosslinker KW - Phosphoramidite KW - Methyltransferase Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311350 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schumacher, Fabian A1 - Wigger, Dominik A1 - Schöl, Marie A1 - Waghmare, Trushnal A1 - Schlegel, Jan A1 - Seibel, Jürgen A1 - Kleuser, Burkhard T1 - Sphingolipids: effectors and Achilles heals in viral infections? JF - Cells N2 - As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention. KW - glycosphingolipids KW - ceramides KW - sphingosine 1-phosphate KW - sphingomyelinase KW - HIV KW - SARS-CoV-2 KW - measles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245151 SN - 2073-4409 VL - 10 IS - 9 ER - TY - JOUR A1 - Zimniak, Melissa A1 - Kirschner, Luisa A1 - Hilpert, Helen A1 - Geiger, Nina A1 - Danov, Olga A1 - Oberwinkler, Heike A1 - Steinke, Maria A1 - Sewald, Katherina A1 - Seibel, Jürgen A1 - Bodem, Jochen T1 - The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue JF - Scientific Reports N2 - To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups. KW - SARS-CoV-2 KW - viral epidemiology KW - viral infection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259820 VL - 11 ER - TY - JOUR A1 - Zahran, Eman Maher A1 - Albohy, Amgad A1 - Khalil, Amira A1 - Ibrahim, Alyaa Hatem A1 - Ahmed, Heba Ali A1 - El-Hossary, Ebaa M. A1 - Bringmann, Gerhard A1 - Abdelmohsen, Usama Ramadan T1 - Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation JF - Marine Drugs N2 - Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented. KW - Scleractinia KW - marine bacteria KW - marine fungi KW - zooxanthellae KW - marine natural products KW - ADME analysis KW - SARS-CoV-2 KW - molecular docking KW - RNA-dependent RNA polymerase KW - methyltransferase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220041 SN - 1660-3397 VL - 18 IS - 12 ER -