TY - JOUR A1 - Kirsch, Wladimir A1 - Kunde, Wilfried T1 - Perceptual changes after learning of an arbitrary mapping between vision and hand movements JF - Scientific Reports N2 - The present study examined the perceptual consequences of learning arbitrary mappings between visual stimuli and hand movements. Participants moved a small cursor with their unseen hand twice to a large visual target object and then judged either the relative distance of the hand movements (Exp.1), or the relative number of dots that appeared in the two consecutive target objects (Exp.2) using a two-alternative forced choice method. During a learning phase, the numbers of dots that appeared in the target object were correlated with the hand movement distance. In Exp.1, we observed that after the participants were trained to expect many dots with larger hand movements, they judged movements made to targets with many dots as being longer than the same movements made to targets with few dots. In Exp.2, another group of participants who received the same training judged the same number of dots as smaller when larger rather than smaller hand movements were executed. When many dots were paired with smaller hand movements during the learning phase of both experiments, no significant changes in the perception of movements and of visual stimuli were observed. These results suggest that changes in the perception of body states and of external objects can arise when certain body characteristics co-occur with certain characteristics of the environment. They also indicate that the (dis)integration of multimodal perceptual signals depends not only on the physical or statistical relation between these signals, but on which signal is currently attended. KW - vision KW - hand movements KW - learning arbitrary mappings Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301074 VL - 12 IS - 1 ER - TY - JOUR A1 - Grittner, Rebecca A1 - Baird, Emily A1 - Stöckl, Anna T1 - Spatial tuning of translational optic flow responses in hawkmoths of varying body size JF - Journal of Comparative Physiology A N2 - To safely navigate their environment, flying insects rely on visual cues, such as optic flow. Which cues insects can extract from their environment depends closely on the spatial and temporal response properties of their visual system. These in turn can vary between individuals that differ in body size. How optic flow-based flight control depends on the spatial structure of visual cues, and how this relationship scales with body size, has previously been investigated in insects with apposition compound eyes. Here, we characterised the visual flight control response limits and their relationship to body size in an insect with superposition compound eyes: the hummingbird hawkmoth Macroglossum stellatarum. We used the hawkmoths' centring response in a flight tunnel as a readout for their reception of translational optic flow stimuli of different spatial frequencies. We show that their responses cut off at different spatial frequencies when translational optic flow was presented on either one, or both tunnel walls. Combined with differences in flight speed, this suggests that their flight control was primarily limited by their temporal rather than spatial resolution. We also observed strong individual differences in flight performance, but no correlation between the spatial response cutoffs and body or eye size. KW - allometry KW - vision KW - optic flow KW - flight control KW - hawkmoth Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266565 SN - 1432-1351 VL - 208 IS - 2 ER - TY - JOUR A1 - Senthilan, Pingkalai R. A1 - Helfrich-Förster, Charlotte T1 - Rhodopsin 7-The unusual Rhodopsin in Drosophila JF - PeerJ N2 - Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins. KW - vision KW - Drosophila KW - Opsins KW - Rhodopsins KW - phototransduction Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177998 VL - 4 ER - TY - JOUR A1 - Groh, Claudia A1 - Rössler, Wolfgang T1 - Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee JF - Insects N2 - Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect. KW - mushroom body KW - microglomeruli KW - projection neurons KW - Kenyon cells KW - dendritic specializations KW - structural synaptic plasticity KW - behavioral plasticity KW - vision KW - olfaction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200774 SN - 2075-4450 VL - 11 IS - 1 ER - TY - JOUR A1 - Müller, Philipp L. A1 - Meigen, Thomas T1 - M-sequences in ophthalmic electrophysiology JF - Journal of Vision N2 - The aim of this review is to use the multimedia aspects of a purely digital online publication to explain and illustrate the highly capable technique of m-sequences in multifocal ophthalmic electrophysiology. M-sequences have been successfully applied in clinical routines during the past 20 years. However, the underlying mathematical rationale is often daunting. These mathematical properties of m-sequences allow one not only to separate the responses from different fields but also to analyze adaptational effects and impacts of former events. By explaining the history, the formation, and the different aspects of application, a better comprehension of the technique is intended. With this review we aim to clarify the opportunities of m-sequences in order to motivate scientists to use m-sequences in their future research. KW - vision Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165796 VL - 16 IS - 1,15 ER - TY - JOUR A1 - Koenig, Sebastian A1 - Wolf, Reinhard A1 - Heisenberg, Martin T1 - Vision in Flies: Measuring the Attention Span JF - PLoS ONE N2 - A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s. KW - eye movements KW - attention KW - Drosophila melanogaster KW - torque KW - motion KW - insect flight KW - eyes KW - vision Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179947 VL - 11 IS - 2 ER - TY - JOUR A1 - Koenig, Sebastian A1 - Wolf, Reinhard A1 - Heisenberg, Martin T1 - Visual Attention in Flies-Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing JF - PLoS ONE N2 - Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβ\(_{posterior}\) Kenyon cells. KW - dopamine transporters KW - Drosophila melanogaster KW - synapses KW - dopaminergics KW - dopamine KW - sensory cues KW - RNA interference KW - vision Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179564 VL - 11 IS - 8 ER - TY - JOUR A1 - Kirsch, Wladimir A1 - Ullrich, Benjamin A1 - Kunde, Wilfried T1 - Are Effects of Action on Perception Real? Evidence from Transformed Movements JF - PLoS ONE N2 - It has been argued that several reported non-visual influences on perception cannot be truly perceptual. If they were, they should affect the perception of target objects and reference objects used to express perceptual judgments, and thus cancel each other out. This reasoning presumes that non-visual manipulations impact target objects and comparison objects equally. In the present study we show that equalizing a body-related manipulation between target objects and reference objects essentially abolishes the impact of that manipulation so as it should do when that manipulation actually altered perception. Moreover, the manipulation has an impact on judgements when applied to only the target object but not to the reference object, and that impact reverses when only applied to the reference object but not to the target object. A perceptual explanation predicts this reversal, whereas explanations in terms of post-perceptual response biases or demand effects do not. Altogether these results suggest that body-related influences on perception cannot as a whole be attributed to extra-perceptual factors. KW - vision KW - preprocessing KW - analysis of variance KW - sensory perception KW - hands KW - fingers KW - experimental design KW - perception Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178574 VL - 11 IS - 12 ER - TY - JOUR A1 - Sommerlandt, Frank M. J. A1 - Spaethe, Johannes A1 - Rössler, Wolfgang A1 - Dyer, Adrian G. T1 - Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture? JF - PLoS One N2 - Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.q KW - bees KW - behavioral conditioning KW - learning KW - color vision KW - vision KW - calyx KW - cognition KW - honey bees Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147932 VL - 11 IS - 10 ER - TY - JOUR A1 - Falibene, Augustine A1 - Roces, Flavio A1 - Rössler, Wolfgang A1 - Groh, Claudia T1 - Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain JF - Frontiers in Behavioral Neuroscience N2 - Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies. KW - microglomeruli KW - temperature KW - broodtranslocation KW - camponotus ants KW - olfaction KW - vision KW - synapticplasticity KW - mushroom body Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146711 VL - 10 IS - 73 ER -