TY - JOUR A1 - König, Markus A1 - Baenninger, Matthias A1 - Garcia, Andrei G. F. A1 - Harjee, Nahid A1 - Pruitt, Beth L. A1 - Ames, C. A1 - Leubner, Philipp A1 - Brüne, Christoph A1 - Buhmann, Hartmut A1 - Molenkamp, Laurens W. A1 - Goldhaber-Gordon, David T1 - Spatially Resolved Study of Backscattering in the Quantum Spin Hall State JF - Physical Review X N2 - The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations. KW - mesoscopics KW - topological insulators KW - transport KW - charge KW - wells KW - branched flow KW - nanostructures Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127225 SN - 2160-3308 VL - 3 IS - 2 ER - TY - JOUR A1 - Brixner, Tobias A1 - Pawłowska, Monika A1 - Goetz, Sebastian A1 - Dreher, Christian A1 - Wurdack, Matthias A1 - Krauss, Enno A1 - Razinskas, Gary A1 - Geisler, Peter A1 - Hecht, Bert T1 - Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective N2 - We describe a setup consisting of a 4 f pulse shaper and a microscope with a high-NA objective lens and discuss the spects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses. The distortions caused by optical aberrations and space–time coupling from the shaper can be reduced by careful setup design and alignment to about 10 nm in space and 1 fs in time. KW - Interference microscopy KW - Scanning microscopy KW - Subwavelength structures KW - nanostructures KW - Pulse shaping KW - Ultrafast measurements Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111120 ER -