TY - JOUR A1 - Roelofs, Freek A1 - Blackburn, Lindy A1 - Lindahl, Greg A1 - Doeleman, Sheperd S. A1 - Johnson, Michael D. A1 - Arras, Philipp A1 - Chatterjee, Koushik A1 - Emami, Razieh A1 - Fromm, Christian A1 - Fuentes, Antonio A1 - Knollmüller, Jakob A1 - Kosogorov, Nikita A1 - Müller, Hendrik A1 - Patel, Nimesh A1 - Raymond, Alexander A1 - Tiede, Paul A1 - Traianou, Efthalia A1 - Vega, Justin T1 - The ngEHT analysis challenges JF - Galaxies N2 - The next-generation Event Horizon Telescope (ngEHT) will be a significant enhancement of the Event Horizon Telescope (EHT) array, with ∼10 new antennas and instrumental upgrades of existing antennas. The increased uv-coverage, sensitivity, and frequency coverage allow a wide range of new science opportunities to be explored. The ngEHT Analysis Challenges have been launched to inform the development of the ngEHT array design, science objectives, and analysis pathways. For each challenge, synthetic EHT and ngEHT datasets are generated from theoretical source models and released to the challenge participants, who analyze the datasets using image reconstruction and other methods. The submitted analysis results are evaluated with quantitative metrics. In this work, we report on the first two ngEHT Analysis Challenges. These have focused on static and dynamical models of M87* and Sgr A* and shown that high-quality movies of the extended jet structure of M87* and near-horizon hourly timescale variability of Sgr A* can be reconstructed by the reference ngEHT array in realistic observing conditions using current analysis algorithms. We identify areas where there is still room for improvement of these algorithms and analysis strategies. Other science cases and arrays will be explored in future challenges. KW - very long baseline interferometry KW - black holes KW - active galactic nuclei KW - radio astronomy KW - imaging KW - instrument design KW - telescopes KW - algorithms KW - data analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304976 SN - 2075-4434 VL - 11 IS - 1 ER - TY - JOUR A1 - Schleicher, Bernd A1 - Arbet-Engels, Axel A1 - Baack, Dominik A1 - Balbo, Matteo A1 - Biland, Adrian A1 - Blank, Michael A1 - Bretz, Thomas A1 - Bruegge, Kai A1 - Bulinski, Michael A1 - Buss, Jens A1 - Doerr, Manuel A1 - Dorner, Daniela A1 - Elsaesser, Dominik A1 - Grischagin, Sergej A1 - Hildebrand, Dorothee A1 - Linhoff, Lena A1 - Mannheim, Karl A1 - Mueller, Sebastian Achim A1 - Neise, Dominik A1 - Neronov, Andrii A1 - Noethe, Maximilian A1 - Paravac, Aleksander A1 - Rhode, Wolfgang A1 - Schulz, Florian A1 - Sedlaczek, Kevin A1 - Shukla, Amit A1 - Sliusar, Vitalii A1 - Willert, Elan A1 - Walter, Roland T1 - Fractional Variability—A Tool to Study Blazar Variability JF - Galaxies N2 - Active Galactic Nuclei emit radiation over the whole electromagnetic spectrum up to TeV energies. Blazars are one subtype with their jets pointing towards the observer. One of their typical features is extreme variability on timescales, from minutes to years. The fractional variability is an often used parameter for investigating the degree of variability of a light curve. Different detection methods and sensitivities of the instruments result in differently binned data and light curves with gaps. As they can influence the physics interpretation of the broadband variability, the effects of these differences on the fractional variability need to be studied. In this paper, we study the systematic effects of completeness in time coverage and the sampling rate. Using public data from instruments monitoring blazars in various energy ranges, we study the variability of the bright TeV blazars Mrk 421 and Mrk 501 over the electromagnetic spectrum, taking into account the systematic effects, and compare our findings with previous results. Especially in the TeV range, the fractional variability is higher than in previous studies, which can be explained by the much longer (seven years compared to few weeks) and more complete data sample. KW - blazars KW - variability KW - fractional variability KW - active galactic nuclei Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197348 SN - 2075-4434 VL - 7 IS - 2 ER - TY - JOUR A1 - Romoli, Carlo A1 - Chakraborty, Nachiketa A1 - Dorner, Daniela A1 - Taylor, Andrew A1 - Blank, Michael T1 - Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501 JF - Galaxies N2 - Flux distribution is an important tool to understand the variability processes in activegalactic nuclei. We now have available a great deal of observational evidences pointing towards thepresence of log-normal components in the high energy light curves, and different models have beenproposed to explain these data. Here, we collect some of the recent developments on this topic usingthe well-known blazar Mrk 501 as example of complex and interesting aspects coming from its fluxdistribution in different energy ranges and at different timescales. The observational data we refer toare those collected in a complementary manner by Fermi-LAT over multiple years, and by the FirstG-APD Cherenkov Telescope (FACT) telescope and the H.E.S.S. array in correspondence of the brightflare of June 2014 KW - gamma rays KW - very high energy KW - active galactic nuclei KW - Markarian 501 KW - monitoring KW - flux distributions Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197580 SN - 2075-4434 VL - 6 IS - 4 ER -