TY - JOUR A1 - Dindas, Julian A1 - Dreyer, Ingo A1 - Huang, Shouguang A1 - Hedrich, Rainer A1 - Roelfsema, M. Rob G. T1 - A voltage-dependent Ca\(^{2+}\) homeostat operates in the plant vacuolar membrane JF - New Phytologist N2 - Cytosolic calcium signals are evoked by a large variety of biotic and abiotic stimuli and play an important role in cellular and long distance signalling in plants. While the function of the plasma membrane in cytosolic Ca\(^{2+}\) signalling has been intensively studied, the role of the vacuolar membrane remains elusive. A newly developed vacuolar voltage clamp technique was used in combination with live-cell imaging, to study the role of the vacuolar membrane in Ca\(^{2+}\) and pH homeostasis of bulging root hair cells of Arabidopsis. Depolarisation of the vacuolar membrane caused a rapid increase in the Ca\(^{2+}\) concentration and alkalised the cytosol, while hyperpolarisation led to the opposite responses. The relationship between the vacuolar membrane potential, the cytosolic pH and Ca2+ concentration suggests that a vacuolar H\(^{+}\)/Ca\(^{2+}\) exchange mechanism plays a central role in cytosolic Ca2+ homeostasis. Mathematical modelling further suggests that the voltage-dependent vacuolar Ca\(^{2+}\) homeostat could contribute to calcium signalling when coupled to a recently discovered K\(^{+}\) channel-dependent module for electrical excitability of the vacuolar membrane. KW - voltage clamp KW - Arabidopsis thaliana KW - calcium signalling KW - computational cell biology KW - cpYFP cytosolic pH reporter KW - R-GECO1 cytosolic Ca\(^{2+}\) reporter KW - TPC1 channel KW - vacuolar membrane Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259627 VL - 230 IS - 4 ER - TY - JOUR A1 - Nuhkat, Maris A1 - Brosché, Mikael A1 - Stoezle-Feix, Sonja A1 - Dietrich, Petra A1 - Hedrich, Rainer A1 - Roelfsema, M. Rob G. A1 - Kollist, Hannes T1 - Rapid depolarization and cytosolic calcium increase go hand-in-hand in mesophyll cells' ozone response JF - New Phytologist N2 - Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O\(_{3}\) triggered a drop in whole-plant CO\(_{2}\) uptake. Within this early phase, O\(_{3}\) pulses (200–1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O\(_{3}\) induced cell death, systemic Ca\(^{2+}\) signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca\(^{2+}\)) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals. KW - reactive oxygen species (ROS) KW - Arabidopsis thaliana KW - Ca\(^{2+}\) indicator KW - Ca\(^{2+}\) signalling KW - membrane depolarization KW - mesophyll KW - ozone Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259646 VL - 232 IS - 4 ER - TY - JOUR A1 - Huang, Shouguang A1 - Ding, Meiqi A1 - Roelfsema, M. Rob G. A1 - Dreyer, Ingo A1 - Scherzer, Sönke A1 - Al-Rasheid, Khaled A. S A1 - Gao, Shiqiang A1 - Nagel, Georg A1 - Hedrich, Rainer A1 - Konrad, Kai R. T1 - Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1 JF - Science Advances N2 - Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata. KW - abscisic-acid activation KW - Arabidopsis thaliana KW - H+-atpase KW - signal transduction KW - potassium channel KW - intact plants KW - K+ channels KW - R-type KW - CO2 KW - SLAC1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260925 VL - 7 IS - 28 ER - TY - JOUR A1 - Fröschel, Christian T1 - In-depth evaluation of root infection systems using the vascular fungus Verticillium longisporum as soil-borne model pathogen JF - Plant Methods N2 - Background While leaves are far more accessible for analysing plant defences, roots are hidden in the soil, leading to difficulties in studying soil-borne interactions. Inoculation strategies for infecting model plants with model root pathogens are described in the literature, but it remains demanding to obtain a methodological overview. To address this challenge, this study uses the model root pathogen Verticillium longisporum on Arabidopsis thaliana host plants and provides recommendations for selecting appropriate infection systems to investigate how plants cope with root pathogens. Results A novel root infection system is introduced, while two existing ones are precisely described and optimized. Step-by-step protocols are presented and accompanied by pathogenicity tests, transcriptional analyses of indole-glucosinolate marker genes and independent confirmations using reporter constructs. Advantages and disadvantages of each infection system are assessed. Overall, the results validate the importance of indole-glucosinolates as secondary metabolites that limit the Verticillium propagation in its host plant. Conclusion Detailed assistances on studying host defence strategies and responses against V. longisporum is provided. Furthermore, other soil-borne microorganisms (e.g., V. dahliae) or model plants, such as economically important oilseed rape and tomato, can be introduced in the infection systems described. Hence, these proven manuals can support finding a root infection system for your specific research questions to further decipher root-microbe interactions. KW - Arabidopsis thaliana KW - Brassica napus KW - indole-glucosinolates KW - plant defence KW - root infection systems KW - root pathogens KW - soil-borne microorganisms KW - Solanum lycopersicum KW - Verticillium dahliae KW - Verticillium longisporum Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260807 VL - 17 ER - TY - JOUR A1 - Jakobson, Liina A1 - Vaahtera, Lauri A1 - Tõldsepp, Kadri A1 - Nuhkat, Maris A1 - Wang, Cun A1 - Wang, Yuh-Shuh A1 - Hõrak, Hanna A1 - Valk, Ervin A1 - Pechter, Priit A1 - Sindarovska, Yana A1 - Tang, Jing A1 - Xiao, Chuanlei A1 - Xu, Yang A1 - Talas, Ulvi Gerst A1 - García-Sosa, Alfonso T. A1 - Kangasjärvi, Saijaliisa A1 - Maran, Uko A1 - Remm, Maido A1 - Roelfsema, M. Rob G. A1 - Hu, Honghong A1 - Kangasjärvi, Jaakko A1 - Loog, Mart A1 - Schroeder, Julian I. A1 - Kollist, Hannes A1 - Brosché, Mikael T1 - Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO\(_{2}\) Signaling JF - PLoS Biology N2 - Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO\(_{2}\) for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO\(_{2}\)-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO\(_{2}\)-insensitivity phenotypes of a mutant cis (CO\(_{2}\)-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO\(_{2}\) signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO\(_{2}\) signaling controls plant water management. KW - MPK12 KW - CO\(_{2}\) signaling KW - Arabidopsis thaliana KW - Cvi-0 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166657 VL - 14 IS - 12 ER - TY - JOUR A1 - Waller, Frank A1 - Mueller, Martin J. A1 - Pedrotti, Lorenzo T1 - Piriformospora indica Root Colonization Triggers Local and Systemic Root Responses and Inhibits Secondary Colonization of Distal Roots JF - PLoS ONE N2 - Piriformospora indica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants. KW - Arabidopsis thaliana KW - flowering plants KW - fungal spores KW - fungi KW - gene expression KW - marker genes KW - plant defenses KW - plant signaling Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96493 ER - TY - JOUR A1 - Blachutzik, Jörg O. A1 - Demir, Faith A1 - Kreuzer, Ines A1 - Hedrich, Rainer A1 - Harms, Gregory S. T1 - Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues N2 - Background: Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results: Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion: Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested. KW - Arabidopsis thaliana KW - Protoplasts KW - Lipid polarization KW - Lipophilic fluorescent dyes KW - Laurdan KW - Sphingolipid KW - Liquid (dis-) ordered phase KW - Plasma membrane KW - Fluorescence mi Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75433 ER - TY - JOUR A1 - Wehner, Nora A1 - Weiste, Christoph A1 - Dröge-Laser, Wolfgang T1 - Molecular screening tools to study Arabidopsis transcription factors N2 - In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY®-compatible ORF collections. (1) The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast trans activation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta. KW - Biologie KW - Arabidopsis thaliana KW - transcription factor function KW - screening tools Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69226 ER -