TY - JOUR A1 - Buga, Ana-Maria A1 - Scholz, Claus Jürgen A1 - Kumar, Senthil A1 - Herndon, James G. A1 - Alexandru, Dragos A1 - Cojocaru, Gabriel Radu A1 - Dandekar, Thomas A1 - Popa-Wagner, Aurel T1 - Identification of New Therapeutic Targets by Genome-Wide Analysis of Gene Expression in the Ipsilateral Cortex of Aged Rats after Stroke JF - PLoS One N2 - Background: Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions. Methodology/Principal Findings: We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc) may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups. Conclusion/Significance: We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure. KW - gamma KW - corticotropin-releasing hormone KW - colony-stimulating factor KW - cerebral ischemia KW - receptor KW - brain KW - protein KW - inhibitor KW - mouse KW - differentiation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130657 VL - 7 IS - 12 ER - TY - JOUR A1 - Nolte, Thomas A1 - Zadeh-Khorasani, Maryam A1 - Safarov, Orkhan A1 - Rueff, Franziska A1 - Varga, Rita A1 - Herbach, Nadja A1 - Wanke, Rüdiger A1 - Wollenberg, Andreas A1 - Mueller, Thomas A1 - Gropp, Roswitha A1 - Wolf, Eckhard A1 - Siebeck, Matthias T1 - Induction of oxazolone-mediated features of atopic dermatitis in NOD-scid IL2R \(γ^{null}\) mice engrafted with human peripheral blood mononuclear cells JF - Disease Models & Mechanisms N2 - Animal models mimicking human diseases have been used extensively to study the pathogenesis of autoimmune diseases and the efficacy of potential therapeutics. They are, however, limited with regard to their similarity to the human disease and cannot be used if the antagonist and its cognate receptor require high similarity in structure or binding. Here, we examine the induction of oxazolone-mediated features of atopic dermatitis (AD) in NOD-scid IL2R \(γ^{null}\) mice engrafted with human peripheral blood mononuclear cells (PBMC). The mice developed the same symptoms as immunocompetent BALB/c mice. Histological alterations induced by oxazolone were characterized by keratosis, epithelial hyperplasia and influx of inflammatory cells into the dermis and epidermis. The cellular infiltrate was identified as human leukocytes, with T cells being the major constituent. In addition, oxazolone increased human serum IgE levels. The response, however, required the engraftment of PBMC derived from patients suffering from AD, which suggests that this model reflects the immunological status of the donor. Taken together, the model described here has the potential to evaluate the efficacy of therapeutics targeting human lymphocytes in vivo and, in addition, might be developed further to elucidate molecular mechanisms inducing and sustaining flares of the disease. KW - expression KW - model KW - pbl KW - differentiation KW - mechanisms KW - antagonists KW - gamma KW - human interleukin-4 KW - rheumatoid-arthritis KW - T-cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122189 VL - 6 ER -