TY - JOUR A1 - Bemm, Felix A1 - Becker, Dirk A1 - Larisch, Christina A1 - Kreuzer, Ines A1 - Escalante-Perez, Maria A1 - Schulze, Waltraud X. A1 - Ankenbrand, Markus A1 - Van de Weyer, Anna-Lena A1 - Krol, Elzbieta A1 - Al-Rasheid, Khaled A. A1 - Mithöfer, Axel A1 - Weber, Andreas P. A1 - Schultz, Jörg A1 - Hedrich, Rainer T1 - Venus flytrap carnivorous lifestyle builds on herbivore defense strategies JF - Genome Research N2 - Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition. KW - Dionaea-muscipula ellis KW - Plant utricularia-gibba KW - Programmed cell-death KW - Genomics data sets KW - RNA-SEQ data KW - Arabidopsis-thaliana KW - Jasmonate perception KW - Action potentials KW - Stress responses KW - Wonderful plants Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188799 VL - 26 IS - 6 ER - TY - JOUR A1 - Beer, Katharina A1 - Steffan-Dewenter, Ingolf A1 - Härtel, Stephan A1 - Helfrich-Förster, Charlotte T1 - A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior JF - Journal of Comparative Physiology A N2 - Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees. KW - Social entrainment KW - Foragers KW - Nurses KW - Locomotor activity KW - Temperature rhythms Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188030 VL - 202 IS - 8 ER - TY - JOUR A1 - Becker, Nils A1 - Kucharski, Robert A1 - Rössler, Wolfgang A1 - Maleszka, Ryszard T1 - Age‐dependent transcriptional and epigenomic responses to light exposure in the honey bee brain JF - FEBS Open Bio N2 - Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation. KW - DNA methylation KW - insect brain KW - light-induced gene expression KW - microRNA KW - neuronal plasticity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147080 VL - 6 IS - 7 ER - TY - JOUR A1 - Bargul, Joel L. A1 - Jung, Jamin A1 - McOdimba, Francis A. A1 - Omogo, Collins O. A1 - Adung'a, Vincent O. A1 - Krüger, Timothy A1 - Masiga, Daniel K. A1 - Engstler, Markus T1 - Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host JF - PLoS Pathogens N2 - African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate’s incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the ‘cellular waveform’. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites. KW - swimming KW - viscosity KW - flagella KW - host-pathogen interactions KW - cell motility KW - blood KW - parasitic diseases KW - trypanosoma brucei gambiense Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146513 VL - 12 IS - 2 ER - TY - JOUR A1 - Aurast, Anna A1 - Gradl, Tobias A1 - Pernes, Stefan A1 - Pielström, Steffen T1 - Big Data und Smart Data in den Geisteswissenschaften JF - Bibliothek Forschung und Praxis N2 - Kein Abstract verfügbar. KW - Textanalyse KW - unstrukturierte Daten KW - Natural Language Processing KW - Text analysis KW - unstructured data KW - natural language processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195237 SN - 1865-7648 SN - 0341-4183 N1 - Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. VL - 40 IS - 2 ER - TY - JOUR A1 - Ankenbrand, Markus J. A1 - Weber, Lorenz A1 - Becker, Dirk A1 - Förster, Frank A1 - Bemm, Felix T1 - TBro: visualization and management of de novo transcriptomes JF - Database N2 - RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro’s modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers. KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147954 VL - 2016 ER - TY - JOUR A1 - Ahmed, Zeeshan A1 - Zeeshan, Saman A1 - Dandekar, Thomas T1 - Mining biomedical images towards valuable information retrieval in biomedical and life sciences JF - Database - The Journal of Biological Databases and Curation N2 - Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. KW - humans KW - software KW - image processing KW - animals KW - computer-assisted KW - data mining/methods KW - natural language processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162697 VL - 2016 ER - TY - JOUR A1 - Adolfi, Mateus C. A1 - Herpin, Amaury A1 - Regensburger, Martina A1 - Sacquegno, Jacopo A1 - Waxman, Joshua S. A1 - Schartl, Manfred T1 - Retinoic acid and meiosis induction in adult versus embryonic gonads of medaka JF - Scientific Reports N2 - In vertebrates, one of the first recognizable sex differences in embryos is the onset of meiosis, known to be regulated by retinoic acid (RA) in mammals. We investigated in medaka a possible meiotic function of RA during the embryonic sex determination (SD) period and in mature gonads. We found RA mediated transcriptional activation in germ cells of both sexes much earlier than the SD stage, however, no such activity during the critical stages of SD. In adults, expression of the RA metabolizing enzymes indicates sexually dimorphic RA levels. In testis, RA acts directly in Sertoli, Leydig and pre-meiotic germ cells. In ovaries, RA transcriptional activity is highest in meiotic oocytes. Our results show that RA plays an important role in meiosis induction and gametogenesis in adult medaka but contrary to common expectations, not for initiating the first meiosis in female germ cells at the SD stage. KW - developmental biology KW - molecular biology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147843 VL - 6 ER -