TY - JOUR A1 - Mukhopadhyay, Deb Pratim A1 - Schleier, Domenik A1 - Wirsing, Sara A1 - Ramler, Jaqueline A1 - Kaiser, Dustin A1 - Reusch, Engelbert A1 - Hemberger, Patrick A1 - Preitschopf, Tobias A1 - Krummenacher, Ivo A1 - Engels, Bernd A1 - Fischer, Ingo A1 - Lichtenberg, Crispin T1 - Methylbismuth: an organometallic bismuthinidene biradical JF - Chemical Science N2 - We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi–C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{−1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me–BiMe\(_2\) bonds could be achieved at moderate temperatures (60–120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions. KW - methylbismuth KW - Photoelektronenspektroskopie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251657 UR - https://pubs.rsc.org/en/content/articlelanding/2020/SC/D0SC02410D VL - 11 IS - 29 ER - TY - JOUR A1 - Ramler, Jacqueline A1 - Krummenacher, Ivo A1 - Lichtenberg, Crispin T1 - Well‐Defined, Molecular Bismuth Compounds: Catalysts in Photochemically Induced Radical Dehydrocoupling Reactions JF - Chemistry – A European Journal N2 - A series of diorgano(bismuth)chalcogenides, [Bi(di‐aryl)EPh], has been synthesised and fully characterised (E=S, Se, Te). These molecular bismuth complexes have been exploited in homogeneous photochemically‐induced radical catalysis, using the coupling of silanes with TEMPO as a model reaction (TEMPO=(tetramethyl‐piperidin‐1‐yl)‐oxyl). Their catalytic properties are complementary or superior to those of known catalysts for these coupling reactions. Catalytically competent intermediates of the reaction have been identified. Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single‐crystal X‐ray diffraction analysis, and (TD)‐DFT calculations. KW - bismuth KW - chalcogens KW - dehydrocoupling KW - photocatalysis KW - radical reactions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224577 VL - 26 IS - 64 SP - 14551 EP - 14555 ER - TY - JOUR A1 - Ramler, Jacqueline A1 - Lichtenberg, Crispin T1 - Molecular Bismuth Cations: Assessment of Soft Lewis Acidity JF - Chemistry – A European Journal N2 - Three‐coordinate cationic bismuth compounds [Bi(diaryl)(EPMe\(_{3}\))][SbF\(_{6}\)] have been isolated and fully characterized (diaryl=[(C\(_{6}\)H\(_{4}\))\(_{2}\)C\(_{2}\)H\(_{1}\)]\(^{2-}\), E=S, Se). They represent rare examples of molecular complexes with Bi⋅⋅⋅EPR\(_{3}\) interactions (R=monoanionic substituent). The \(^{31}\)P NMR chemical shift of EPMe3 has been found to be sensitive to the formation of LA⋅⋅⋅EPMe\(_{3}\) Lewis acid/base interactions (LA=Lewis acid). This corresponds to a modification of the Gutmann–Beckett method and reveals information about the hardness/softness of the Lewis acid under investigation. A series of organobismuth compounds, bismuth halides, and cationic bismuth species have been investigated with this approach and compared to traditional group 13 and cationic group 14 Lewis acids. Especially cationic bismuth species have been shown to be potent soft Lewis acids that may prefer Lewis pair formation with a soft (S/Se‐based) rather than a hard (O/N‐based) donor. Analytical techniques applied in this work include (heteronuclear) NMR spectroscopy, single‐crystal X‐ray diffraction analysis, and DFT calculations. KW - bismuth KW - bonding analysis KW - cationic species KW - HSAB principle KW - Lewis acids Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225808 VL - 26 IS - 45 SP - 10250 EP - 10258 ER - TY - JOUR A1 - Lichtenberg, Crispin T1 - Main‐Group Metal Complexes in Selective Bond Formations Through Radical Pathways JF - Chemistry – A European Journal N2 - Recent years have witnessed remarkable advances in radical reactions involving main‐group metal complexes. This includes the isolation and detailed characterization of main‐group metal radical compounds, but also the generation of highly reactive persistent or transient radical species. A rich arsenal of methods has been established that allows control over and exploitation of their unusual reactivity patterns. Thus, main‐group metal compounds have entered the field of selective bond formations in controlled radical reactions. Transformations that used to be the domain of late transition‐metal compounds have been realized, and unusual selectivities, high activities, as well as remarkable functional‐group tolerances have been reported. Recent findings demonstrate the potential of main‐group metal compounds to become standard tools of synthetic chemistry, catalysis, and materials science, when operating through radical pathways. KW - bond formation KW - catalysis KW - main-group metals KW - organic and inorganic synthesis KW - radicals Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214758 VL - 26 IS - 44 SP - 9674 EP - 9687 ER - TY - JOUR A1 - Hanft, Anna A1 - Lichtenberg, Crispin T1 - Dimerization of 2-[(2-((2-aminophenyl)thio)phenyl)amino]-cyclohepta-2,4,6-trien-1-one through hydrogen bonding, C\(_{19}\)H\(_{16}\)N\(_2\)OS JF - Zeitschrift für Kristallographie - New Crystal Structures N2 - C\(_{19}\)H\(_{16}\)N\(_2\)OS, triclinic, P (1) over bar (no. 2), a= 8.1510(3) angstrom, b = 8.8021(3) angstrom, c =11.3953(5) angstrom, alpha =72.546(2)degrees, beta=84.568(2)degrees, gamma =80.760(2)degrees, V =768.86(5) angstrom(3), Z =2, R\(_{gt}\)(F) = 0.0491, WR\(_{ref}\)(F-2) = 0.1494, T =100 K. KW - crystal structure KW - complexes KW - ligands KW - tropocoronands KW - mononuclear KW - chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229482 VL - 235 IS - 4 ER -