TY - CHAP A1 - Altschmied, Joachim A1 - Schartl, Manfred T1 - Genetics and molecular biology of tumour formation in Xiphophorus N2 - No abstract available. KW - Schwertkärpfling KW - Tumor KW - Entstehung KW - Molekularbiologie KW - Genetik Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69752 ER - TY - JOUR A1 - Winkler, Christoph A1 - Wittbrodt, Joachim A1 - Lammers, Reiner A1 - Ullrich, Axel A1 - Schartl, Manfred T1 - Ligand-dependent tumor induction in medakafish embryos by a Xmrk receptor tyrosine kinase transgene N2 - Xmrk encodes a subclass 1 receptor tyrosine kinase (RTK) which has been cloned from the melanomainducing locus Tu of the poeciliid fish Xiphophorus. To demonstrate a high oncogenic potential in vivo we transferred the gene into early embryos of the closely related medakafish. Ectopic expression of the Xmrk oncogene under the control of a strong, constitutive promoter (CMVTk) led to the induction of embryonic tumors with high incidence, after short latency periods, and with a specific pattern of affected tissues. We demonstrate ligand-dependent transformation in vivo using a chimeric receptor consisting of the extracellular and transmembrane domains of the human EGF receptor (HER) and the cytoplasmatic domain of Xmrk. Expression of the chimeric receptor alone does not lead to ldnase activation or induction of tumors. Coexpression of the chimera with its corresponding ligand, human transforming growth factor alpha (bTGF(X), however, results in the activation of the chimeric RTK. In injected fish embryos the induction of the neoplastic growth is observed with similar incidence and tissue distribution as in embryos carrying the native Xmrk oncogene suggesting that the ligand as well as factors downstream of tbe RTK are required for tumor formation. In this study we show single-step induction of tumors by ectopic expression of RTKs in vivo substantiating tbe significance of autocrine stimulation in RTK induced tumors in vertebrales. KW - Japankärpfling KW - Ligand KW - Tumor Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87107 ER - TY - CHAP A1 - Adam, D. A1 - Schartl, A. A1 - Andexinger, S. A1 - Hölter, S. A1 - Wilde, B. A1 - Schartl, Manfred T1 - Genetic factors in tumour formation: The melanoma-inducing gene of Xiphophorus N2 - No abstract available. KW - Humangenetik KW - Tumor KW - Entstehung Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86388 ER - TY - CHAP A1 - Anders, F. A1 - Scholl, E. A1 - Schartl, Manfred T1 - Environmental and hereditary factors in the causation of neoplasia, based on studies of the Xiphophorus fish melanoma system N2 - Neoplasia in Xiphophorus can be classified into: a) a Jarge group triggered by carcinogens; b) a large group triggered by promoters; and c) a small group that develops "spontaneously" according to Mendelian Jaw. The process leading to susceptibility for neoplasia is represented by the disintegration of gene systems that normally protect the fish from neoplasia. Interpopulational arid interracial hybridization is the most effective process that Ieads to disintegration of the protective gene systems. Environmental factors may complete disintegration in somatic cells and thus may trigger neoplasia. The applications of the findings on Xiphophorus to humans are discussed. KW - Schwertkärpfling KW - Gen KW - Umweltfaktor KW - Tumor Y1 - 1981 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86402 ER -