TY - THES A1 - Riaño, Rubén Felipe T1 - BTN3A1 in the immune response of Vγ9Vδ2 T cells T1 - BTN3A1 in der Immunantwort der Vγ9Vδ2 T Zellen N2 - Human Vγ9Vδ2 T cells are the main γδ T cell subset in the circulation, accounting for up to 5% of the total peripheral blood lymphocyte population. They have been suggested to be important in response to tumors and infections. Their immune mechanisms encompass cell killing via cytotoxicity and secretion of pro-inflammatory cytokines such as IFNγ and tumor necrosis factor (TNF). The main stimulators of Vγ9Vδ2 T cells are isopentenyl pyrophosphate (IPP) and (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), denominated phosphoantigens (PAg). A major advance in the understanding of PAg detection and Vγ9Vδ2 T cell activation has been the identification of the butyrophlin 3A (BTN3A) proteins as key mediators in these processes. In humans, three isoforms constitute the BTN3A family: BTN3A1, BTN3A2, and BTN3A3; and their genes are localized on the short arm of chromosome 6. The role of BTN3A1 has been highlighted by BTN3A-specific monoclonal antibody 20.1 (mAb 20.1), which has an agonist effect and causes proliferation, expansion, and activation of primary human Vγ9Vδ2 T cells. On the other hand, BTN3A-specific monoclonal antibody 103.2 (mAb 103.2) is antagonistic, inhibiting the Vγ9Vδ2 T cell response. The actual mechanism underlying both PAg- and mAb 20.1-mediated activation is not completely elucidated, but the importance of BTN3A1 is clear. The main objective of this dissertation was to characterize the role of BTN3A1 in the PAg-dependent and PAg-independent Vγ9Vδ2 T cell activation and to evaluate its contribution in the response to influeza A virus infected cells. This research work demonstrated, by using Vγ9Vδ2 TCR MOP-transduced murine cells (reporter cells), that human chromosome 6 (Chr6) is mandatory for PAg-induced stimulation, but not for stimulation with mAb 20.1. The reporter cells responded to mAb 20.1 in cultures with BTN3A1-transduced Chinese hamster ovary cells (CHO BTN3A1) as antigen presenting cells. Nevertheless, for PAg-dependent activation the presence of Chr6 in CHO BTN3A1 was mandatory. Although reporter cells expressing clonotypically different Vγ9Vδ2 TCRs showed similar PAg response, they clearly differed in the mAb 20.1 response. The reporter cell line transduced with Vγ9Vδ2 TCR D1C55 demonstrated essentially no response to mAb 20.1 compared to Vγ9Vδ2 TCR MOP cells. These findings were further supported by experiments performed with human PBMCs-derived Vγ9Vδ2 T cell clones. The results indicate heterogeneity in the PAg- and 20.1-dependent responses, in terms of CD25 and CD69 expression, among three different Vγ9Vδ2 T cells clones. Co-cultures of reporter cells with Raji RT1BI and PAg plus mAb 20.1 or single chain antibody 20.1 (sc 20.1) revealed no additive or synergistic activating effects. In contrast, mAb 20.1 or sc 20.1 inhibited the PAg-mediated activation of the reporter cells. The comparison of the relative contribution of the isoforms BTN3A2 and BTN3A3, in the activation of Vγ9Vδ2 T cells, was undertaken by overexpression of these isoforms in CHO cells. The results showed that BTN3A2 contributes to both PAg- and mAb-induced Vγ9Vδ2 T cell activation. On the contrary, BTN3A3 does not support PAg-mediated γδ T cell response. Additionally, mutations in the proposed PAg- and mAb 20.1-binding sites of the extracellular BTN3A1 domain were generated by means of site-directed mutagenesis. These mutations revoked the mAb 20.1-induced Vγ9Vδ2 T cell activation, but not that induced by PAg. Finally, co-cultures of Vγ9Vδ2 TCR MOP-transduced murine reporter cells with influenza A/PR/8/34-infected cells, or infection of PBMCs with this virus strain indicated that BTN3A1 might be dispensable for the Vγ9Vδ2 T cell response against influenza A. The data of this research work points out that: i) in addition to BTN3A1, other Chr6-encoded genes are necessary for Vγ9Vδ2 T cell activation with PAg; ii) clonotypical (CDR3) differences influence the PAg- and mAb 20.1-mediated Vγ9Vδ2 T cell activation; iii) the PAg- and mAb 20.1-induced responses are not synergistic and interfere with each other; iv) BTN3A2 and BTN3A3 isoforms differ in the ability to support PAg- or mAb 20.1-dependent Vγ9Vδ2 T cell activation; v) the importance of the intracellular B30.2 domain of BTN3A1, in the Vγ9Vδ2 T cell activation, might be higher than that of the extracellular domain; and vi) in spite of the importance of BTN3A1 in the activation of Vγ9Vδ2 T cells, it is possible that many molecules with redundant functions are involved in the elimination of influenza virus infection by these cells. In summary, it is possible to hypothesize a model in which BTN3A1 detects prenyl pyrophosphates in the cytoplasm via its B30.2 domain and in association with another protein(s). The binding of PAg to this domain induces a multimerization of BTN3A1 or a conformational change of its extracellular domain (mimicked by mAb 20.1). These modifications might be recognized by the Vγ9Vδ2 TCR or by an associated T cell protein. In the case that the TCR directly recognizes BTN3A1, the intensity of the response will depend on the Vγ9Vδ2 TCR clonotype. Future research will allow to gain a better understanding of BTN3A1, its interaction with other proteins, its actual role in the activation of Vγ9Vδ2 T cells, and its importance in specific models of cancer or infection. This knowledge will be necessary to transform these cells into effective tools in the clinic. N2 - Im Menschen stellen Vγ9Vδ2 T Zellen die größte Subpopulation an γδ T Zellen im Blut dar und machen bis zu 5% der Gesamtpopulation peripherer Blutlymphozyten aus. Sie spielen eine wichtige Rolle bei der Bekämpfung von Tumoren und Infektionen. Ihre Immunantwort umfasst cytotoxische Aktivität sowie Sekretion proinflammatorischer Zytokine wie IFNγ und dem Tumor Necrosis Faktor (TNF). Vγ9Vδ2 T Zellen werden am stärksten durch Isopentenylpyrophosphat (IPP) und (E)-4-hydroxy-3-methyl-but-2-enylpyrophosphat (HMBPP) stimuliert, welche als Phosphoantigene (PAg) bezeichnet werden. Ein großer Schritt für das Verständnis der Phosphoantigenerkennung und Vγ9Vδ2 T Zellaktivierung war die Identifzierung der Schlüsselrolle, die Butyrophilin 3A (BTN3A) Proteinen in diesen Prozessen zukommt. Im Menschen existieren drei Isoformen von BTN3A (BTN3A1, BTN3A2 und BTN3A3), deren Gene auf dem kurzen Arm von Chromosom 6 lokalisiert sind. Die Rolle von BTN3A1 wurde durch den BTN3A spezifischen monoklonalen Antikörper 20.1 (mAk 20.1) besonders hervorgehoben, der eine agonistische Wirkung besitzt und Proliferation, Expansion, sowie Aktivierung primärer humaner Vγ9Vδ2 T Zellen hervorruft. Zudem existiert ein antagonistischer BTN3A spezifischer monoklonale Antikörper 103.2 (mAk 103.2), welcher Vγ9Vδ2 T Zellantworten inhibiert. Die der PAg- und mAk 20.1 vermittelten Aktivierung zugrunde liegenden Mechanismen wurden noch nicht vollständig aufgeklärt, die bedeutende Rolle von BTN3A1 in diesem Prozess ist jedoch eindeutig. Das Ziel dieser Arbeit war es, die Rolle von BTN3A1 in der PAg abhängigen sowie unabhängigen Vγ9Vδ2 T Zellaktivierung zu charakterisieren und ihren Beitrag zu der Immunantwort gegen mit Influenza A Virus infizierte Zellen zu ermitteln. Durch die Nutzung Vγ9Vδ2 TCR MOP transduzierter muriner Zellen als Reporterzellen konnte gezeigt werden, dass das humane Chromosom 6 (Chr6) zwar für die PAg abhängige Stimulation, nicht jedoch für die Aktivierung durch mAk 20.1 zwingend notwendig ist. In Kultur mit BTN3A1 transduzierten “chinese hamster ovary” (CHO) Zellen antworteten die Reporterzellen auf mAk 20.1. Für eine PAg abhängige Aktivierung war jedoch zusätzlich die Anwesenheit des humanen Chr6 in CHO BTN3A1 Zellen Voraussetzung. Obwohl Reporterzellen, die Vγ9Vδ2 TCRs verschiedener Klonotypen exprimierten, ähnliche PAg Antworten zeigten, unterschieden sie sich in der mAk 20.1 Antwort klar. Die mit Vγ9Vδ2 TCR D1C55 transduzierten Reporterzellen zeigten im Vergleich zu Vγ9Vδ2 TCR MOP Zellen nahezu keine mAk 20.1 abhängige Antwort. Diese Befunde wurden auch durch Experimente gestützt, die mit humanen, aus PBMCs gewonnenen Vγ9Vδ2 T Zellklonen durchgeführt wurden. Deren Resultate weisen, bezüglich der CD25 und CD69 Expression, auf eine heterogene PAg- und 20.1 abhängige Antwort der drei unterschiedlichen Vγ9Vδ2 T Zellklone hin. Kokulturen von Reporterzellen mit Raji RT1BI und PAg plus mAk 20.1 oder dem Einzelkettenantikörper 20.1 (sc 20.1) zeigten keine additive oder synergistische aktivierende Wirkung, vielmehr wurde die PAg vermittelte Aktivierung der Reporterzellen durch mAk 20.1 oder sc 20.1 inhibiert. Mittels Überexpression der beiden Isoformen BTN3A2 und BTN3A3 in CHO Zellen, wurde deren jeweiliger Beitrag zur Aktivierung von Vγ9Vδ2 T Zellen verglichen. Die Ergebnisse zeigten, dass BTN3A2 sowohl zu PAg als auch mAk induzierten Vγ9Vδ2 T Zellaktivierung beiträgt. BTN3A3 hingegen unterstützt die PAg vermittelte γδ T Zellaktivierung nicht. Weiterhin wurden, mittels gerichteter Mutagenese, in den vorgeschlagenen PAg- und mAk 20.1 Bindungsstellen der extrazellulären BTN3A1 Domäne Mutationen generiert. Diese verhinderten die mAk 20.1-, jedoch nicht die PAg vermittelte Vγ9Vδ2 T Zellaktivierung. Zuletzt zeigten Kokulturen von Vγ9Vδ2 TCR MOP transduzierten murinen Reporterzellen und Influenza A/PR/8/34 infizierten Zellen, sowie eine Infektion von PBMCs mit diesem Virusstamm, dass BTN3A1 für die Vγ9Vδ2 T Zellantwort gegen Influenza A entbehrlich sein könnte. Die Ergebnisse dieser Arbeit zeigen, dass i) zusätzlich zu BTN3A1, andere auf Chr6 befindliche Gene für die PAg abhängige Aktivierung von Vγ9Vδ2 T Zellen nötig sind; ii) klonotypische (CDR3) Unterschiede die PAg und mAk 20.1 vermittelte Vγ9Vδ2 T Zellaktivierung beeinflussen; iii) die PAg- and mAk 20.1 induzierten Antworten sich nicht verstärken, sondern beeinträchtigen; iv) sich die Isoformen BTN3A2 und BTN3A3 in der Fähigkeit, die PAg- oder mAk 20.1 abhängige Vγ9Vδ2 T Zellaktivierung zu unterstützen, unterscheiden; v) die intrazelluläre B30.2 Domäne von BTN3A1 eine größere Bedeutung für die Vγ9Vδ2 T Zellaktivierung haben könnte als die extrazelluläre; und dass vi) trotz der Bedeutung von BTN3A1 für die Aktivierung von Vγ9Vδ2 T Zellen, die Möglichkeit besteht, dass viele Moleküle mit redundanter Funktion bei der Eliminierung von Influenza Viren durch diese Zellen eine Rolle spielen. Zusammenfassend lässt sich als Hypothese ein mögliches Modell aufstellen, in dem BTN3A1 in Assoziation mit einem oder mehreren zusätzlichen Proteinen zytoplasmatische Prenylpyrophosphate mittels der B30.2 Domäne detektiert. Die Bindung der PAg an diese Domäne würde dann eine Multimerisierung von BTN3A1 oder eine Konformationsänderung der extrazellulären Domäne (wie auch durch mAk 20.1 herbeigeführt) induzieren. Diese Modifizierungen könnten vom Vγ9Vδ2 TCR oder von einem assoziierten T Zellprotein erkannt werden. Für den Fall einer direkten Erkennung von BTN3A1 durch den TCR würde der Grad der T Zellantwort vom Vγ9Vδ2 TCR Klonotyp abhängen. Zukünftige Forschung wird ein besseres Verständnis von BTN3A1, dessen Proteininteraktionen, dessen Rolle in der Vγ9Vδ2 T Zellaktivierung, und dessen Bedeutung in spezifischen Krebs- oder Infektionsmodellen ermöglichen. Wissen, das benötigt wird, um diese Zellen effizient in klinischen Therapien einzusetzen. KW - gamma delta T cells KW - Vgamma9Vdelta2 T cells KW - phosphoantigen KW - HMBPP KW - IPP KW - butyrophilin 3A KW - human chromosome 6 KW - monoclonal antibody 20.1 KW - monoclonal antibody 103.2 KW - influenza A virus KW - T cell activation KW - T-Lymphozyt KW - Immunmodulation KW - In vitro Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142084 ER - TY - THES A1 - Appelt-Menzel, Antje T1 - Etablierung und Qualifizierung eines humanen Blut-Hirn-Schranken-Modells unter Verwendung von induziert pluripotenten und multipotenten Stammzellen T1 - Establishment and qualification of a human blood-brain barrier model by use of human induced pluripotent stemm cells an multipotent stem cells N2 - Die Blut-Hirn-Schranke (BHS) stellt eine der dichtesten und wichtigsten Barrieren zwischen Blutzirkulation und Zentralnervensystem (ZNS) dar. Sie besteht aus spezialisierten Endothelzellen, welche die zerebralen Kapillaren auskleiden und durch sehr dichte Tight Junctions (TJs) miteinander verbunden sind. Weitere Komponenten der dynamischen Blut-Hirn-Schrankenbarriere stellen Perizyten, Astrozyten, Neurone und Mikrogliazellen dar, welche zusammen mit der extrazellulären Matrix der Basalmembran der Gehirnkapillaren und den zuvor genannten Endothelzellen ein komplexes regulatorisches System, die so genannte neurovaskuläre Einheit bilden (Hawkins und Davis 2005). Die Hauptfunktionen der BHS lassen sich in drei Untergruppen untergliedern, die physikalische, metabolische und Transport-Barriere (Neuhaus und Noe 2010). Hauptsächlich dient die BHS der Aufrechterhaltung der Homöostase des ZNS und dem Schutz vor neurotoxischen Substanzen sowie Pathogenen, wie Bakterien und Viren. Zudem ist sie auch für die Versorgung der Neuronen mit Nährstoffen und regulierenden Substanzen sowie den Efflux von Stoffwechselendprodukten des ZNS zurück ins Blut verantwortlich. Für die Entwicklung von Medikamenten zur Behandlung von neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Parkinson und Multiple Sklerose oder Gehirntumoren, stellt die Dichtigkeit der BHS gegenüber Substanzen und die hohe metabolische Aktivität der Endothelzellen aber ein großes Problem dar. Viele Medikamente sind nicht in der Lage in ausreichender Konzentration die BHS zu überwinden, um an ihren Wirkort zu gelangen oder werden vor dem Transport metabolisiert und die Wirksamkeit dadurch eingeschränkt. Weiterhin spielen auch Defekte der BHS eine entscheidende Rolle in der Beeinflussung der Pathogenese vieler ZNS-Erkrankungen. Aufgrund des hohen Bedarfs an geeigneten Testsystemen in der Grundlagen- sowie präklinischen Forschung für Medikamentenentwicklung und Infektionsstudien wurden eine Vielzahl unterschiedlicher BHS-Modelle entwickelt. Neben in silico-, azellulären in vitro- und in vivo-Modellen sind auch zahlreiche zellbasierte Modelle der BHS entwickelt worden. Standardisierte Modelle auf Basis immortalisierter Zelllinien jedoch weisen nur eine inhomogene TJ-Expression auf und verfügen meist über eine geringe Barriereintegrität, erfasst über transendotheliale elektrische Widerstände (TEER) unter 150 · cm2 (Deli et al. 2005). Im Vergleich dazu wurden in Tierexperimenten TEER-Werte von mehr als 1500 · cm2 an der BHS gemessen (Butt et al. 1990; Crone und Olesen 1982). Die Verfügbarkeit humaner primärer BHS-Zellen ist sehr limitiert und ihr Einsatz nicht nur im Hinblick auf ethische Aspekte bedenklich. Humane Gehirnzellen können z. B. aus Biopsie- oder Autopsiematerial von Patienten mit Epilepsie oder Gehirntumoren isoliert werden. Allerdings besteht hier das Risiko, dass die isolierten Zellen krankheitsbedingt verändert sind, was die Eigenschaften der BHS-Modelle erheblich beeinflussen kann. Eine Alternative, die diese Probleme umgeht, ist die Verwendung von humanen induziert pluripotenten Stammzellen (hiPSCs), um standardisierte humane BHS-Modelle unter reproduzierbaren Bedingungen bereitzustellen. Im Rahmen dieser Arbeit ist es gelungen, hiPSCs in vitro nach etablierten und standardisierten Methoden in Endothelzellen der BHS, neurale Stammzellen (hiPS-NSCs) sowie Astrozyten (hiPS-A) zu differenzieren (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013;Reinhardt et al. 2013) und zum Aufbau der Modelle einzusetzen. Die Endothelzellen wurden mit Hilfe protein- und genbasierter Nachweismethoden auf das Vorhandensein von endothelzellspezifischen TJ-Markern sowie spezifischen Transportern untersucht und funktionell charakterisiert. Die Kryokonservierung der hiPS-EC-Progenitoren, die im Rahmen der vorliegenden Arbeit entwickelt wurde, ermöglicht eine größere räumliche und zeitliche Flexibilität beim Arbeiten mit den stammzellbasierten Modellen sowie das Anlegen standardisierter Zellbanken. Weiterhin wurden multipotente NSCs aus fetalen Gehirnbiopsien isoliert (fNSCs) und als Kontrollkulturen zu den hiPS-NSCs für den Aufbau von BHS-Modellen eingesetzt. Mit dem Ziel die in vivo-BHS bestmöglich zu imitieren und die Modelleigenschaften zu optimieren, wurde ein Set aus zehn unterschiedlichen BHS-Modellen basierend auf primären Zellen, hiPSCs und fNSCs analysiert. Der Aufbau der BHS-Modelle erfolgte unter Verwendung von Transwellsystemen. Durch die systematische Untersuchung des Einflusses der unterschiedlichen Zelltypen der neurovaskulären Einheit auf die Barriereintegrität und Genexpression des BHS-Endothels, konnten die Quadrupel-Kulturen mit Perizyten, Astrozyten und hiPS-NSCs als die Kultur mit den physiologischsten Eigenschaften identifiziert werden. Auf Grund der signifikant erhöhten TEER-Werte von bis zu 2500 · cm2 und einer um mindestens 1,5-fachen Steigerung der Genexpression BHSrelevanter Transporter und TJ-Moleküle gegenüber den Monokulturen, wurden diese Modelle für weiterführende Studien ausgewählt. Das Vorhandensein eines komplexen, in vivo-ähnlichen TJ-Netzwerkes, bestehend aus Occludin, Claudin 1, 3, 4 und 5, konnte mittels quantitativer Realtime-PCR, Western Blot sowie ultrastruktureller Analyse in der Gefrierbruch- und Raster-Elektronenmikroskopie nachgewiesen werden. Neben der Begrenzung der parazellulären Permeabilität, welche über die geringe Permeation von FITC-Dextran (4 kDa und 40 kDa), Fluoreszein und Lucifer Yellow nachgewiesen wurde, stellt die BHS ebenfalls eine Barriere für den transzellulären Transport von Substanzen dar. Eine Beurteilung der Modelle hinsichtlich der Qualifikation für die Nutzung im Wirkstoffscreening wurde mit Hilfe von Transportversuchen unter dem Einsatz von BHS-relevanten Referenzsubstanzen durchgeführt. Die Klassifikation der Testsubstanzen erfolgte analog ihrer Permeationsgeschwindigkeiten: Diazepam und Koffein gelten als schnell transportierte Wirkstoffe, Ibuprofen, Celecoxib und Diclofenac werden mit einer mittleren Geschwindigkeit über die BHS transportiert und Loratadin sowie Rhodamin 123 sind langsam permeierende Substanzen. Innerhalb der Versuche mit den Quadrupelkulturen wurde diese Reihenfolge bestätigt, lediglich für Koffein wurde ein signifikant niedrigerer Permeationskoeffizient verglichen mit der Monokultur erzielt. Der Einsatz der hiPSC-Technologie ermöglicht es zudem, aus einer Stammzelllinie große Mengen an humanen somatischen Zelltypen zu generieren und für gezielte Anwendungen bereitzustellen. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass mit Hilfe eines eigens für diese Zwecke konstruierten Rührreaktorsystems eine reproduzierbare Expansion der hiPSCs unter definierten Bedingungen ermöglicht wurde. Basierend auf dieser Grundlage ist nun ein Hochdurchsatz-Screening von Medikamenten denkbar. Die in dieser Arbeit präsentierten Daten belegen die Etablierung eines stammzellbasierten in vitro- Quadrupelmodels der humanen BHS, welches über in vivo-ähnliche Eigenschaften verfügt. Die Anforderungen, die an humane BHS-Modelle gestellt werden, wie die Reproduzierbarkeit der Ergebnisse, eine angemessene Charakterisierung, welche die Untersuchung der Permeabilität von Referenzsubstanzen einschließt, die Analyse der Expression von BHS-relevanten Transportermolekülen sowie die solide und physiologische Morphologie der Zellen, wurden erfüllt. Das etablierte BHS-Modell kann in der Pharmaindustrie für die Entwicklung von Medikamenten eingesetzt werden. Ausreichend qualifizierte Modelle können hier in der präklinischen Forschung genutzt werden, um Toxizitäts- und Transportstudien an neu entwickelten Substanzen durchzuführen und eine bessere in vitro-in vivo-Korrelation der Ergebnisse zu ermöglichen oder Mechanismen zu entwickeln, um die BHS-Barriere gezielt zu überwinden. N2 - The blood-brain barrier (BBB) presents one of the tightest and most important barriers between the blood circulation and the central nervous system (CNS). The BBB consists of specialized endothelial cells, which line the cerebral capillaries and are connected through very dense tight junctions (TJs). Together with pericytes, astrocytes, neurons, microglial cells and the extracellular matrix of the basal membrane of the brain capillaries, they form a dynamic and complex regulatory system, the so-called neurovascular unit (Hawkins and Davis 2005). The main functions of the BBB can be divided into three subgroups, the physical-, metabolic- and transport-barrier (Neuhaus and Noe 2010). The BBB mainly serves to maintain the homeostasis of the CNS and for protection against neurotoxical substances and pathogens, such as bacteria and viruses. Moreover, the BBB ensures the supply of neurons with nutrients and regulatory substances. Furthermore, it is responsible for the efflux of CNS metabolism waste products. For the development of drugs applied for the treatment of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis or even brain tumors, the tightness of the BBB models towards substances and the high metabolic activity of the endothelial cells pose a problem. Numerous drugs cannot overcome the BBB in sufficient enough concentration to reach the target location or they are metabolized before transportation and thus become less effective. Moreover, defects of the BBB play a decisive role in the manipulation of the pathogenesis of numerous CNS diseases. Due to the high demand for test systems in basic and preclinical research of drug development and infection studies, a range of different BBB models have been developed. Besides the in silico, acellular in vitro and in vivo models, numerous cell-based BBB models have been developed. However, standardized models based on immortalized cell lines show only inhomogeneous TJ expression and possess low barrier integrity which is detected through transendothelial electrical resistance (TEER) below 150 · cm2 (Deli et al. 2005). In comparison, the TEER values in animal tests reached more than 1500 · cm2 at the BBB (Butt et al. 1990; Crone and Olesen 1982). The availability of human primary BBB cells is highly limited. Moreover, using human primary BBB cells is an extremely serious matter, not only in respect of ethical aspects. Human brain cells can, for instance, be isolated from biopsy or autopsy material obtained from patients suffering epilepsy or brain cancer. However, there is the risk that the isolated cells are altered due to disease, which may significantly change the features of the BBB models. An alternative to avoid such problems and to provide standardized human BBB models by the use of reproducible conditions, is the application of human induced pluripotent stem cells (hiPSCs). In this context, it has been successful to differentiate hiPSCs in vitro – under established and reproducible methods – into endothelial cells of the BBB (hiPS-ECs), neural stem cells (hiPS-NSCs) as well as astrocytes (hiPS-A) (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013; Reinhardt et al. 2013) and to use them for model establishment. The endothelial cells were examined for the existence and the functionality of endothelial-specific markers as well as specific transporters by protein- and gene-based methods. Within this work, the croypreservation of hiPS-EC progenitors was established. This will allow an increase of the spatial and temporal flexibility while working with the stem cell based models as well as the establishment of standardized cell banks. Furthermore, multipotent NSCs, isolated from fetal brain biopsies (fNSCs), were used as a control population for hiPSC-NSCs and for BBB modelling. In order to imitate the in vivo BBB in the best possible way and to optimize model characteristics, a set of ten different BBB models based on primary cells, hiPSCs and fNSCs was analyzed. Model establishment was done by the use of transwell systems. By the systematically analysis of the influence of the different neurovascular unit cell types on barrier integrity and on endothelial cell gene expression, the quadruple culture with pericytes, astrocytes and hiPS-NSCs was identified demonstrating the most physiological properties. Due to the significant increase of TEER results up to 2500 · cm2 as well as the at least 1.5-fold increase in gene expression of BBB relevant transporter and TJ markers compared to the mono-cultures, this model was selected for further studies. The presence of a complex in vivo-like TJ network, based on occludin, claudin 1, 3, 4 and 5 was detected by quantitative reale time PCR, Western blot analyses as well as on ultrastructural level by freeze fracture electron microscopy and transmission electron microscopy. Beside the limitation of the paracellular permeability, proven by the low permeation of FITC dextran (4 kDa and 40 kDa), fluorescein and Lucifer yellow, the BBB represents also a barrier for transcellular transported substances. A model evaluation, to assess the models qualification to be used for drug screenings, was proven by transport studies based on BBB relevant reference substances. The classification of the test substances was made analog their permeation rates: diazepam and caffeine are classified as fast, ibuprofen, celecoxib and diclofenac as medium, and loratadine and rhodamine 123 as slow permeating substances. Within our tests, this ranking based on literature data could be confirmed by using the quadruple-culture models, only caffeine was transported with a significantly decreased permeation coefficient compared to the mono-cultures. Furthermore, the implementation of the hiPSC technology allows the generation of a large quantity of human somatic cell types form only one single stem cell line and their provision for specific applications. Within this work it was shown, that by the use of an in-house constructed stirred tank bio-reactor, providing defined culture conditions, a reproducible expansion of hiPSCs was enabled. On this basis, a high throughput drug screening might be possible. The data presented within this work demonstrate the establishment of a stem cell based in vitro quadruple-model of the human BBB with in vivo-like characteristics. All minimal requirements for human BBB modeling, including the reproducibility of the results, adequate characterization with regard on the permeability of reference components, expression of BBB transporters as well as the robust and physiological morphology are fulfilled. The established BBB model can be used in pharmaceutical drug development. In preclinical research adequate qualified models are asked for toxicity and transport studies with new developed substances in order to allow a better in vitro-in vivo correlation of the results. Moreover, the model can be used to develop mechanisms to selectively overcome the barrier. KW - Blut-Hirn-Schranke KW - Stammzelle KW - Zelldifferenzierung KW - In vitro KW - Endothelzelle KW - induziert pluripotente Stammzelle KW - multipotente Stammzelle KW - in vitro Modell KW - Neurovaskuläre Einheit KW - Neurale Stammzellen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134646 ER -