TY - THES A1 - Hondke, Sylvia T1 - Elucidation of WISP3 function in human mesenchymal stem cells and chondrocytes T1 - Aufklärung der WISP3 Funktion in humanen mesenchymalen Stammzellen und Chondrozyten N2 - WISP3 is a member of the CCN family which comprises six members found in the 1990’s: Cysteine-rich,angiogenic inducer 61 (CYR61, CCN1), Connective tissue growth factor (CTGF, CCN2), Nephroblastoma overexpressed (NOV, CNN3) and the Wnt1 inducible signalling pathway protein 1-3 (WISP1-3, CCN4-6).They are involved in the adhesion, migration, mitogenesis, chemotaxis, proliferation, cell survival, angiogenesis, tumorigenesis, and wound healing by the interaction with different integrins and heparan sulfate proteoglycans. Until now the only member correlated to the musculoskeletal autosomal disease Progressive Pseudorheumatoid Dysplasia (PPD) is WISP3. PPD is characterised by normal embryonic development followed by cartilage degradation over time starting around the age of three to eight years. Animal studies in mice exhibited no differences between knock out or overexpression compared to wild type litter mates, thus were not able to reproduce the symptoms observed in PPD patients. Studies in vitro and in vivo revealed a role for WISP3 in antagonising BMP, IGF and Wnt signalling pathways. Since most of the knowledge of WISP3 was gained in epithelial cells, cancer cells or chondrocyte cell lines, we investigated the roll of WISP3 in primary human mesenchymal stem cells (hMSCs) as well as primary chondrocytes. WISP3 knock down was efficiently established with three short hairpin RNAs in both cell types, displaying a change of morphology followed by a reduction in cell number. Simultaneous treatment with recombinant WISP3 was not enough to rescue the observed phenotype nor increase the endogenous expression of WISP3. We concluded that WISP3 acts as an essential survival factor, where the loss resulted in the passing of cell cycle control points followed by apoptosis. Nevertheless, Annexin V-Cy3 staining and detection of active caspases by Western blot and immunofluorescence staining detected no clear evidence for apoptosis. Furthermore, the gene expression of the death receptors TRAILR1 and TRAILR2,important for the extrinsic activation of apoptosis, remained unchanged during WISP3 mRNA reduction. Autophagy as cause of cell death was also excluded, given that the autophagy marker LC3 A/B demonstrated to be uncleaved in WISP3-deficient hMSCs. To reveal correlated signalling pathways to WISP3 a whole genome expression analyses of WISP3-deficient hMSCs compared to a control (scramble) was performed. Microarray analyses exhibited differentially regulated genes involved in cell cycle control, adhesion, cytoskeleton and cell death. Cell death observed by WISP3 knock down in hMSCs and chondrocytes might be explained by the induction of necroptosis through the BMP/TAK1/RIPK1 signalling axis. Loss of WISP3 allows BMP to bind its receptor activating the Smad 2/3/4 complex which in turn can activate TAK1 as previously demonstrated in epithelial cells. TAK1 is able to block caspase-dependent apoptosis thereby triggering the assembly of the necrosome resulting in cell death by necroptosis. Together with its role in cell cycle control and extracellular matrix adhesion, as demonstrated in human mammary epithelial cells, the data supports the role of WISP3 as tumor suppressor and survival factor in cells of the musculoskeletal system as well as epithelial cells. N2 - WISP3 ist ein Mitglied der CCN-Familie, die aus sechs Familienmitgliedern besteht und in den 1990er Jahren endeckt wurde: Cysteine-rich, angiogenic inducer 61 (CYR61, CCN1), Connective tissue growth factor (CTGF, CCN2), Nephroblastoma overexpressed (NOV, CNN3) und den Wnt1 inducible signalling pathway protein 1-3 (WISP1-3, CCN4-6). Die CCN-Proteine sind durch ihre Interaktion mit verschiede- nen Integrinen und Heparansulfaten involviert in die Regulation der Adhäsion, der Migration, der Mi- togenese, der Chemotaxis, der Proliferation, des Zellüberlebens, der Angiogenese, der Tumorgenese und der Wundheilung. WISP3 ist momentan das einzige Mitglied, das direkt mit einer muskuloskelettalen Erkrankung, der Progressiven Pseudorheumatoiden Dysplasie (PPD), assoziiert wird. PPD ist charakter- isiert durch eine normale embryonale Entwicklung mit fortschreitender Knorpeldegeneration beginnend im Alter von drei bis acht Jahren. Tierversuche mit knock out oder Überexpression von WISP3 in Mäusen waren nicht in der Lage die Symptome der Erkrankung nachzustellen, da keine Unterschiede im Vergleich zu den Wurfgeschwistern beobachtbar waren. In vitro und in vivo Studien offenbarten eine antagonisierende Rolle für WISP3 im BMP, IGF und Wnt Signalweg. Da die meisten Informationen über WISP3 jedoch in Epithel- und Krebszellen sowie immortalisierten Chondrozytenzelllinien generiert wurden, untersuchten wir die Rolle von WISP3 in primären humanen mesenchymalen Stammzellen (hMSZs) und primären Chondrozyten. Der WISP3 knock down wurde mit drei short hairpin RNAs in beiden Zelltypen etabliert und wies eine veränderte Zellmorphologie sowie eine reduzierte Zellzahl auf. Knock down mit gleichzeitiger rekombi- nanter WISP3-Behandlung konnte den beobachteten Phänotyp sowie den Zellverlust nicht retten und auch eine Änderung der endogenen Genexpression von WISP3 war nicht zu detektieren. Schlussfolgernd muss WISP3 ein wichtiger Überlebensfaktor sein, dessen Verlust zur Überschreitung von Zellzyklus- Kontrollpunkten führt, was in Apoptose mündet. Apoptosenachweise wie Annexin V-Cy3 Färbung, Immunfluoreszenzfärbung und Western blot für aktive Caspasen lieferten keine positiven Beweise für diese Form des Zelltodes. Auch die Genexpression der Todesrezeptoren TRAILR1 und TRAILR2, wichtig für die extrinsische Aktivierung der Apoptose, zeigte kein verändertes Expressionsmuster in WISP3-defizienten hMSZs. Autophagie als Zelltod wurde ebenfalls ausgeschlossen, nachdem im West- ern Blot kein gespaltene Form des Autophagiemarkers LC3 A/B zu detektieren war. Um die Rolle von WISP3 beim Zelltod weiter zu entschlüsseln, wurden Genom-Expressionsanalysen von WISP3-defizienten hMSZs im Vergleich zu Kontroll-hMSZs angefertigt. Die Analysen ergaben unterschiedlich regulierte Gene vor allem in den Bereichen Zellzyklus-Regulation, Adhäsion, Zytoskelett und Zelltod. Der durch WISP3-Verlust ausgelöste Zelltod kann möglicherweise durch die Aktivierung der Nektroptose über den BMP/TAK1/RIPK1 Signalweg erklärt werden. Es ist bekannt, dass WISP3 BMP4 bindet und so dessen Bindung an den Rezeptor verhindert. Bei WISP3 Verlust bindet BMP4 an seinen Rezeptor und aktiviert den Smad 2/3/4 Komplex der wiederum TAK1 phosphoryliert, wie zuvor in Epithelzellen demonstriert. TAK1 ist in der Lage die Caspase-induzierte Apoptose zu blockieren und auf diese Weise die Bildung des Nekrosomes auszulösen, welches zum Zelluntergang durch Nekroptose führt. Zusammen mit seiner Rolle in der Zellzyklus-Kontrolle und der extrazellulären Matrixadhäsion, die in humanen Brustepithelialzellen nachgewiesen wurden, unterstützen diese Daten eine Rolle für WISP3 als Tumorsuppressor und Überlebensfaktor in Zellen des Epithel und des muskuloskelettalen Systems. KW - Knorpelzelle KW - PPD KW - mesenchymal stem cells KW - cell death KW - chondrocytes KW - Mesenchymzelle KW - Dysplasie KW - Genexpression KW - Werk Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109641 ER - TY - THES A1 - Heintel, Timo Michael T1 - Einfluss von Stickstoffmonoxid auf die Genexpression humaner artikulärer Chondrozyten während Expansion und Redifferenzierung in einem in-vitro-Modell T1 - Influence of nitric oxide on the gene expression of human articular chondrocytes during expansion and redifferentiation in an in vitro-modell N2 - Bei der Kultivierung humaner artikulärer Chondrozyten für eine mögliche therapeutische Anwendung gilt es, deren besondere zellphysiologische Eigenschaften zu berücksichtigen, um ein zell- und molekularbiologisch hochwertiges Transplantat erzielen zu können. Stickstoffmonoxid (NO) gilt als ein wichtiger Faktor für die Homöostase der chondrogenen Extrazellulärmatrix, der für die Funktion des hyalinen Gelenkknorpels entscheidenden Gewebekomponente. Es stellt bisherigen Untersuchungen nach einen wichtigen Regulator im sensiblen Gleichgewicht zwischen der Synthese knorpelspezifischer Matrixproteine und dem Matrixabbau dar. Trotz dieser Bedeutung ist das Wissen über die Expression der NO-generierenden Enzyme in humanen artikulären Chondrozyten, insbesondere unter Kulturbedingungen, sehr begrenzt. Des Weiteren fehlen Erkenntnisse über den Einfluss von NO auf den Differenzierungsstatus dieser Zellen. Ziel der vorliegenden Arbeit war daher die Charakterisierung der Genexpression adulter Gelenkknorpelzellen während deren Expansion und anschließender Redifferenzierung in einem in vitro-Modell. Das Hauptaugenmerk wurde hierbei auf die 3 NOS-Isoformen sowie die beiden Matrixproteine Kollagen Typ II und Aggrecan gelegt. In Zusatzversuchen wurde die Bedeutung von NO für den Metabolismus sowie für Differenzierungsvorgänge humaner artikulärer Chondrozyten untersucht. Hierbei sollten funktionelle Zusammenhänge aufgezeigt und regulative Abhängigkeiten auf der Ebene der Transkription identifiziert werden. Humane artikuläre Chondrozyten wurden hierfür unter standardisierten Bedingungen enzymatisch aus Knorpelgewebe von Femurköpfen isoliert. Nach Expansion der Zellen in zweidimensionaler Monolayerkultur wurden die amplifizierten Zellen in Form dreidimensionaler Zellaggregate in einem chondrogenen Differenzierungsmedium rekultiviert. Veränderungen des zellulären Phänotyps wurden morphologisch, histochemisch, immunhistochemisch und mittels RT-PCR auf Genexpressionsebene verfolgt. Im Verlauf der Expansion konnte eine funktionelle und morphologische Dedifferenzierung der Chondrozyten dokumentiert werden. Durch 21tägige Rekultivierung in einem definierten chondrogenen Differenzierungsmedium konnten die Zellen ihre, zuvor verloren gegangenen knorpelspezifischen Eigenschaften wieder ausbilden (Redifferenzierung). Die Analyse der Genexpression der NOS-Isoformen humaner artikulärer Chondrozyten auf RNA-Ebene ergab neben der, in der Literatur bereits beschriebenen induzierbaren NOS die Expression zweier weiterer Isoformen, der neuronalen und der endothelialen NOS. In weiteren Versuchen wurde der Effekt verschiedener Mediatoren auf die Genexpression der Gelenkknorpelzellen beobachtet. So wurden Zellaggregate während verschiedener Phasen der Redifferenzierung mit rhIL-1 beta bzw. rhTNF alpha stimuliert. Die Chondrozyten reagierten darauf mit einer starker Induktion der induzierbaren NOS sowie mit einem konsekutiven Anstieg der NO-Freisetzung. Die eNOS-Expression wurde negativ reguliert. Auf die Konzentration der nNOS-Transkripte hatten beide Zytokine keinen messbaren Einfluss. Zudem konnte auf diesen Reiz hin eine drastische Reduktion der Kollagen Typ II und Aggrecan-Expression festgestellt werden. In Zusatzversuchen, bei denen u.a. ein NO-Donor und ein NOS-Inhibitor zum Einsatz kamen wurde dieser Effekt genauer erforscht. Aus den gewonnenen Ergebnissen kann geschlossen werden, dass der Effekt von IL-1 beta und TNF alpha auf die Synthese der beiden wichtigen Matrixproteine Kollagen Typ II und Aggrecan zumindest teilweise über NO vermittelt wird. In mehren Versuchsreihen gelang es des Weiteren die besondere Bedeutung von NO für die Zelldifferenzierung zu belegen. Die Modifikation des verwendeten chondrogenen Differenzierungsmediums durch Zusatz des NOS-Inhibitors NG-Amino-L-Arginin (L-NAA) führte zu einer deutlich früheren bzw. stärkeren Expression der beiden chondrogenen Markergene Kollagen Typ II und Aggrecan. N2 - Wird nachgereicht! KW - Chondrozyten KW - Stickstoffmonoxid KW - Genexpression KW - Expansion KW - Redifferenzierung KW - chondrocytes KW - nitric oxide KW - gene expression KW - expansion KW - redifferentiation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20456 ER -