TY - THES A1 - Elsässer, Dominik Martin T1 - Indirect Search for Dark Matter in the Universe - the Multiwavelength and Multiobject Approach T1 - Indirekte Suche nach Dunkler Materie im Universum - die Multiwellenlängen und Multiobjekt Strategie N2 - Dunkle Materie ist ein zentraler Bestandteil der modernen Kosmologie, und damit von entscheidender Bedeutung für unser Verständnis der Strukturbildung im Universum. Das offensichtliche Fehlen von elektromagnetischer Wechselwirkung in Kombination mit unabhängigen Messungen der Energiedichte der baryonischen Materie über die Häufigkeit der primordialen leichten Elemente weisen auf eine nicht-baryonische Natur der Dunklen Materie hin. Die Wirkung der Dunklen Materie bei der Strukturbildung zeigt weiterhin dass ihre Konstituenten kalt sind, also zum Zeitpunkt des Gleichgewichts zwischen Strahlung und Materie eine Temperatur kleine als ihre Ruhemasse aufwiesen. Generische Kandidaten für das Dunkelmaterie-Teilchen sind stabile, schwach wechselwirkende Teilchen mit Ruhemassen von der Größenordnung der Skala der elektroschwachen Symmetriebrechung, wie sie zum Beispiel in der Supersymmetrie bei erhaltener R-Parität vorkommen. Derartige Teilchen frieren auf natürliche Weise im frühen Universum mit kosmologisch relevanten Reliktdichten aus. Die fortschreitende Strukturbildung im Universum führt dann zur Bildung von überdichten Regionen, in denen die Dunkelmaterie-Teilchen wiederum in signifikantem Ausmaß annihilieren können. Dadurch würde ein potentiell detektierbarer Fluß von Hochenergie-Teilchen einschließlich Photonen aus den instabilen Zwischenprodukten der Annihilationsereignisse erzeugt. Die Spektren dieser Teilchen würden Rückschlüsse auf die Masse und den Annihilations-Querschnitt als wichtige Größen zur mikrophysikalischen Identifikation der Dunkelmaterie-Teilchen erlauben. Darin liegt die zentrale Motivation für indirekte Suchen nach der Dunklen Materie. Zum gegenwärtigen Zeitpunkt jedoch haben weder diese indirekten Suchen, noch direkte Methoden zur Suche nach elastischen Streuereignissen zwischen Dunkelmaterie-Teilchen und Atomkernen sowie Beschleunigerexperimente einen eindeutigen Nachweis von Dunkelmaterie-Teilchen erbracht. Das an sich stellt keine Überraschung dar, denn die zu erwartenden Signale sind aufgrund der schwachen Wechselwirkung der Teilchen nur von geringer Intensität. Im Falle der indirekten Suchen steht zu erwarten, dass selbst für die größten Massekonzentrationen im Universum die Stärke des Annihilationssignals der Dunklen Materie den durch astrophysikalische Quellen verursachten Untergrund nicht überschreitet. Die Möglichkeit der sicheren Unterscheidung zwischen einem möglichen Signal aus der Annihilation der Dunklen Materie und eben diesem Untergrund ist daher entscheidend für die Erfolgsaussichten der indirekten Suchen. In der vorliegenden Arbeit wird eine neuartige Suchstrategie ausgearbeitet und vorgestellt, deren zentrale Komponente die Auswahl von Beobachtungszielen aus einem breiten Massebereich, die Kontrolle der astrophysikalischen Untergründe, und die Einbeziehung von Daten aus mehreren Wellenlängenbereichen ist. Die durchgeführten Beobachtungen werden vorgestellt und interpretiert. Ein Ergebnis ist, dass die Unsicherheiten in Bezug auf die Verteilung der Dunklen Materie in Halos und deren individuelle Dichtestruktur, sowie in Bezug auf die mögliche Verstärkung des Annihilationssignales durch Substruktur, im Falle der massearmen Halos (wie zum Beispiel bei den Zwerggalaxien) größer ist als bei massereichen Halos, wie denen der Galaxienhaufen. Andererseits weisen die massereichen Halos größere Unsicherheiten in Hinblick auf die zu erwartenden rein astrophysikalischen Untergründe auf. Die Unsicherheiten in Bezug auf die bisher unbekannte Teilchenphysik jenseits des Standardmodells schließlich sind unabhängig von der Masse der beobachteten Halos. Im Zusammenspiel ermöglichen es diese unterschiedlichen Skalierungsverhalten, die globale Unsicherheit durch eine kombinierte Analyse der Beobachtungen von Halos mit verschiedenen Massen, die einen bedeutenden Teil der Masseskala abdecken, nennenswert zu reduzieren. Diese Strategie wurde im Rahmen des wissenschaftlichen Beobachtungsprogrammes des MAGIC Teleskopsystems implementiert. Es wurden Beobachtungen von Zwerggalaxien sowie des Virgo- und des Perseus-Galaxienhaufens durchgeführt. Die resultierenden Grenzen auf Gammastrahlung aus der Annihilation von schwach wechselwirkenden, massereichen Teilchen gehören zum Zeitpunkt dieser Niederschrift zu den stärksten Grenzen aus indirekten Suchen nach der Dunklen Materie. Die so gewonnenen Grenzen auf die Annihilations-Flüsse schränken einige in der Literatur diskutierte und durch aussergewöhnlich große Annihilations-Flüsse gekennzeichnete Szenarien stark ein. N2 - Cold dark matter constitutes a basic tenet of modern cosmology, essential for our understanding of structure formation in the Universe. Since its first discovery by means of spectroscopic observations of the dynamics of the Coma cluster some 80 years ago, mounting evidence of its gravitational pull and its impact on the geometry of space-time has build up across a wide range of scales, from galaxies to the entire Hubble flow. The apparent lack of electromagnetic coupling and independent measurements of the energy density of baryonic matter from the primordial abundances of light elements show the non-baryonic nature of dark matter, and its clustering properties prove that it is cold, i.e. that it has a temperature lower than its mass during the time of radiation-matter equality. A generic particle candidate for cold dark matter are weakly interacting massive particles at the electroweak symmetry-breaking scale, such as the neutralinos in R-parity conserving supersymmetry. Such particles would naturally freeze-out with a cosmologically relevant relic density at early times in the expanding Universe. Subsequent clustering of matter would recover annihilation interactions between the dark matter particles to some extent and thus lead to potentially observable high-energy emission from the decaying unstable secondaries produced in annihilation events. The spectra of the secondaries would permit a determination of the mass and annihilation cross section, which are crucial for the microphysical identification of the dark matter. This the central motivation for indirect dark matter searches. However, presently neither the indirect searches, nor the complementary direct searches based on the detection of elastic scattering events, nor the production of candidate particles in collider experiments, has yet provided unequivocal evidence for dark matter. This does not come as a surprise, since the dark matter particles interact only through weak interactions and therefore the corresponding secondary emission must be extremely faint. It turns out that even for the strongest mass concentrations in the Universe, the dark matter annihilation signal is expected to not exceed the level of competing astrophysical sources. Thus, the discrimination of the putative dark matter annihilation signal from the signals of the astrophysical inventory has become crucial for indirect search strategies. In this thesis, a novel search strategy will be developed and exemplified in which target selection across a wide range of masses, astrophysical background estimation, and multiwavelength signatures play the key role. It turns out that the uncertainties regarding the halo profile and the boost due to surviving substructure are bigger for halos at the lower end of the observed mass scales, i.e. in the regime of dwarf galaxies and below, while astrophysical backgrounds tend to become more severe for massive dark matter halos such as clusters of galaxies. By contrast, the uncertainties due to unknown details of particle physics are invariant under changes of the halo mass. Therefore, the different scaling behaviors can be employed to significantly cut down on the uncertainties in observations of different targets covering a major part of the involved mass scales. This strategical approach was implemented in the scientific program carried out with the MAGIC telescope system. Observations of dwarf galaxies and the Virgo- and Perseus clusters of galaxies have been carried out and, at the time of writing, result in some of the most stringent constraints on weakly interacting massive particles from indirect searches. Here, the low-threshold design of the MAGIC telescope system plays a crucial role, since the bulk of the high-energy photons, produced with a high multiplicity during the fragmentation of unstable dark matter annihilation products, are emitted at energies well below the dark matter mass scale. The upper limits severely constrain less generic, but more prolific scenarios characterized by extraordinarily high annihilation efficiencies. KW - Gammastrahlung KW - MAGIC-Teleskop KW - Dunkle Materie KW - Kosmologie KW - Gamma Rays KW - Cosmology KW - Dark Matter Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69464 ER - TY - THES A1 - Simon, Dennis T1 - Aspects in the fate of primordial vacuum bubbles N2 - At the present day the idea of cosmological inflation constitutes an important extension of Big Bang theory. Since its appearance in the early 1980’s many physical mechanisms have been worked out that put the inflationary expansion of space that proceeds the Hot Big Bang on a sound theoretical basis. Among the achievements of the theory of inflation are the explanaition of the almost Euclidean geometry of ‘visible’space, the homogeneity of the cosmic background radiation but, in particular, also the tiny inhomogeneity of a relative amplitude of 10−5. In many models of inflation the inflationary phase ends only locally. Hence, there exists the possibility that the inflationary process still goes on in regions beyond our visual horizon. This property is commonly termed ‘eternal inflation’. In the framework of a cosmological scalar fields, eternal inflation can manifest itself in a variety of ways. On the one hand fluctuations of the field, if sufficiently large, can work against the classical trajectory and therefore counteract the end of inflation. In regions where this is the case the accelerated expansion of space continues at a higher rate. In parts of this region the process may replicate itself again and in this way may continue throughout all of time. Space and field are said to reproduce themselves. On the other hand, a mechanism that can occur in addition or independent of the latter, is so called vacuum tunneling. If the potential of the scalar field has several local minima, a semi-classical calculation suggests that within a spherical region, a bubble, the field can tunnel to another state. The respective tunneling rates depend on the potential difference and the shape of the potential between the states. Generally, the tunneling rate is exponentially suppressed, which means that the inflation lasts for a long time before tunneling takes place. The ongoing inflationary process effectively reduces local curvature, anistotropy and inhomogeneity, so that this property is known as the ‘cosmic no-hair conjecture’. For this reason cosmological considerations of the evolution of bubbles thus far almost entirely involved vacuum (de Sitter) backgrounds. However, new insights in the framework of string theory suggest high tunneling rates which allow for the possibility of bubble nucleation in non-vacuum dominated backgrounds. In this case the evolution of the bubble depends on the properties of the background spacetime. A deeper introduction in chapter 4 is followed by the presentation of the Lemaître-Tolman spacetime in chapter 5 which constitutes the background spacetime in the study of the effect of matter and inhomogeneity on the evolution of vacuum bubbles. In chapter 6 we explicitly describe the application of the ‘thin-shell’ formalism and the resulting system of equations. This is succeeded in chapter 7 by the detailed analysis of bubble evolution in various limits of the Lemaître-Tolman spacetime and a Robertson-Walker spacetime with a rapid phase transition. The central observations are that the presence of dust, at a fixed surface energy density, goes along with a smaller nucleation volume and possibly leads to a a collapse of the bubble. In an expanding background, the radially inhomogeneous dust profile is efficiently diluted so that there is essentially no effect on the evolution of the domain wall. This changes in a radially inhomogeneous curvature profile, positive curvature decelerates the expansion of the bubble. Moreover, we point out that the adopted approach does not allow for a treatment of a, physically expected, matter transfer so that the results are to be understood as preliminary under this caveat. In the second part of this thesis we consider potential observable consequences of bubble collisions in the cosmic microwave background radiation. The topological nature of the signal suggests the use of statistics that are well suited to quantify the morphological properties of the temperature fluctuations. In chapter 10 we present Minkowski Functionals (MFs) that exactly provide such statistics. The presented error analysis allows for a higher precision of numerical MFs in comparison to earlier methods. In chapter 12 we present the application of our algorithm to a Gaussian and a collision map. We motivate the expected MFs and extract their numerical counterparts. We find that our least-squares fitting procedure accurately reproduces an underlying signal only when a large number of realizations of maps are averaged over, while for a single WMAP and PLANCK resolution map, only when a highly prominent disk, with |δT| = 2√σG and ϑd = 40◦, we are able to recover the result. This is unfortunate, as it means that MF are intrinsically too noisy to be able to distinguish cold and hot spots in the CMB for small sizes. N2 - Die Idee der kosmologischen Inflation stellt heute die wichtigste Erweiterung der klassischen Urknalltheorie dar. Seit ihrem Aufkommen in den frühen 80er Jahren sind zahlreiche physikalische Mechanismen bekannt und ausgearbeitet geworden, die die inflationäre Expansion des Raums vor der dem ‘heißen’ Urknall auf eine tragfähige, theoretische Basis stellen. Zu den Errungenschaften der Inflationstheorie zählen unter Anderem die Erklärung der nahezu Euklidischen Geometrie des sichtbaren Raums, die bemerkenswerte Homogenität der kosmischen Hintergrundstrahlung, im Besonderen aber auch die ihr innewohnenden winzigen Unregelmäßigkeiten mit einer relativen Amplitude der Größenordnung 10−5. In vielen Inflationsmodellen endet die Inflation allerdings nur lokal. Demzufolge besteht die Möglichkeit, dass es außerhalb des von uns sichtbaren Raums Gebiete geben kann, in denen der inflationäre Prozess weiterhin stattfindet. Dieser Eigenschaft wird durch den Begriff ‘Ewige Inflation’ Rechnung getragen. Ewige Inflation kann sich im Rahmen der Skalarfeld-Inflation in verschiedenen Formen manifestieren. Zum Einen können die Fluktuationen des Feldes so groß sein, dass sie der klassischen Trajektorie, und damit dem Ende der Inflation, entgegenwirken wirken. In Regionen, in denen das geschieht, setzt sich die beschleunigte Expansion des Raums mit einer höheren Rate weiter fort. In Teilen solcher Regionen mag sich dies wiederholen und der Vorgang auf diese Weise theoretisch bis ins Unendliche andauern. Raum und Feld reproduzieren sich selbst. Eine weitere Möglichkeit, die sowohl unabhängig als auch zusätzlich zur zuvor beschriebenen auftreten kann, ist die des sogenannten Vakuumtunnelns. Wenn das Potential des Skalarfelds mehrere lokale Minima aufweist, so legt eine semi-klassische Rechnung, dass das Feld innerhalb eines sphärischen Gebiets, einer Blase, in einen anderen Zustand tunneln kann. Fortwährende Inflation beseitigt großräumig, effektiv, jegliche Form der Unregelmäßigkeit, d. h. Raumkrümmung, Anisotropie und Inhomogenität, sodass dieser Sachverhalt unter dem Ausdruck ‘cosmic no-hair conjecture’ bekannt ist. Aus diesem Grund waren bisherige Betrachtungen fast aussschließlich der Entwicklung von Blasen in einem Vakuumhintergrund gewidmet. Neue Überlegungen im Rahmen der Stringtheorie erlauben allerdings auch hohe Tunnelraten, sodass die Möglichkeit der Nukleation von Blasen in nicht-vakuumdominierten Hintergründen besteht. Die weitere Entwicklung hängt in diesem Fall von den Eigenschaften des Hintergrunds ab. Nach der Ableitung der Vakuumlösung wird sukzessive auf die Blasenentwicklung in einem statischen Hintergrund, in einem dynamischen, aber homogenen Hintergrund, in einem flachen, inhomogenen Hintergrund, in einem gekrümmten, inhomogenen Hintergrund und in einem homogenen Hintergrund mit Phasenübergang eingegangen. Zu den zentralen Beobachtungen gehört, dass die Präsenz des Staubs, bei fixierter Oberflächendichte, eine Verringerung des Nukleationsvolumens mit sich bringt und dazu führen kann, dass die Blase einen Kollaps beginnt. Das ändert sich in einem radial inhomogenen Krümmungsprofil, positive Raumkrümmung hat einen abbremsenden Effekt auf die Expansion der Blase. Es wird herausgestellt, dass der verwendete Ansatz keine Möglichkeit zur Behandlung eines, physikalisch zu erwartenden, Materietransfers bietet und die damit erzielten Ergebnisse unter diesem Vorbehalt zu verstehen sind. Im zweiten Teil der vorliegenden Arbeit wird potentiell beobachtbaren Konsequenzen der Kollision zweier Blasen in der kosmischen Hintergrundstrahlung nachgegangen. Die topologische Natur des Signals in der letzten Streufläche legt die Verwendung von Statistiken nahe, die es erlauben, die morphologischen Eigenschaften der Temperaturfluktuationen zu quantifizieren. Diese Statistiken bieten die Minkowski Funktionale (MF), die in Kapitel 10 vorgestellt werden. Dieses wird benutzt um Karten eines Gaussschen Zufallsfeldes zu erzeugen und die entsprechenden MF zu berechnen. Die vorgestellte Fehleranalyse erlaubt eine höhere Präzision der numerischen MF im Vergleich zu bisherigen Methoden. Ein Fit der geringsten quadratischen Abweichung reproduziert die tatsächlichen Parameter nur dann, wenn über eine hohe Anzahl von Realisierungen gemittelt wird, wohingegen die Betrachtung einer einzigen Karte in WMAP bzw. Planck Auflösung nur für “auffällige” Scheiben mit Temperaturunterschied δT = 2√σG und Öffnungswinkel ϑd = 40◦ Übereinstimmung erreicht wird. Dies bedeutet, das MF ein schlechtes ‘Signal zu Rausch’Verhältnis besitzen um heiße oder kalte Scheiben in der kosmischen Hintergrundstrahlung zu erfassen. KW - Kosmologie KW - Kosmische Hintergrundstrahlung KW - Inflationäres Weltall KW - Bubble Universes KW - Israel Junction Conditions KW - Inhomogeneous Cosmological Models KW - Minkowski Functionals KW - HEALPix Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67019 ER - TY - THES A1 - Adamek, Julian T1 - Classical and Quantum Aspects of Anisotropic Cosmology T1 - Klassische und Quantentheoretische Gesichtspunkte der Anisotropen Kosmologie N2 - The idea that our observable Universe may have originated from a quantum tunneling event out of an eternally inflating false vacuum state is a cornerstone of the multiverse paradigm. Modern theories that are considered as an approach towards the ultraviolet-complete fundamental theory of particles and gravity, such as the various types of string theory, even suggest that a vast landscape of different vacuum configurations exists, and that gravitational tunneling is an important mechanism with which the Universe can explore this landscape. The tunneling scenario also presents a unique framework to address the initial conditions of our observable Universe. In particular, it allows to introduce deviations from the cosmological concordance model in a controlled and well-motivated way. These deviations are a central topic of this work. An important feature in most of the theories mentioned above is the presumed existence of additional space dimensions in excess of the three which we observe in our every-day experience. It was realized that these extra dimensions could avoid our detection if they are compactified to microscopic length scales far beyond the reach of current experiments. There also seem to be natural mechanisms available for dynamical compactification in those theories. These typically lead to a vast landscape of different vacuum configurations which also may differ in the number of macroscopic dimensions, only the total number of dimensions being determined by the theory. Transitions between these vacuum configurations may hence open up new directions which were previously compact, spontaneously compactify some previously macroscopic directions, or otherwise re-arrange the configuration of compact and macroscopic dimensions in a more general way. From within the bubble Universe, such a process may be perceived as an anisotropic background spacetime - intuitively, the dimensions which open up may give rise to preferred directions. If our 3+1 dimensional observable Universe was born in a process as described above, one may expect to find traces of a preferred direction in cosmological observations. For instance, two directions could be curved like on a sphere, while the third space direction is flat. Using a scenario of gravitational tunneling to fix the initial conditions, I show how the primordial signatures in such an anisotropic Universe can be obtained in principle and work out a particular example in more detail. A small deviation from isotropy also has phenomenological consequences for the later evolution of the Universe. I discuss the most important effects and show that backreaction can be dynamically important. In particular, under certain conditions, a buildup of anisotropic stress in different components of the cosmic fluid can lead to a dynamical isotropization of the total stress-energy tensor. The mechanism is again demonstrated with the help of a physical example. N2 - Die Vorstellung von einem Multiversum baut unter anderem auf dem Gedanken auf, dass unser beobachtbares Universum in einem Tunnelprozess entstanden sein könnte. Demzufolge hätte es sich dabei von einem ewig währenden, inflationären Vakuumzustand abgekoppelt. Die so entstehende Blase gleicht einer bewohnbaren Insel inmitten eines gewaltigen Ozeans. Moderne Theorien, die als gute Ansätze bezüglich einer fundamentalen und ultraviolett-vollständigen Beschreibung von Elementarteilchen und Gravitation angesehen werden, wie etwa die verschiedenen Ausprägungen der Stringtheorie, legen sogar nahe, dass eine ganze "Landschaft" (im Englischen "landscape") verschiedener Vakuumzustände existiert, und dass Tunnelprozesse einen wichtigen Mechanismus darstellen, mit dem das Universum die Vielzahl an Möglichkeiten erforschen und realisieren kann. Das Tunnelszenario stellt auch einen einzigartigen Rahmen zur Verfügung, um die Anfangsbedingungen unseres beobachtbaren Universums zu untersuchen. Insbesondere besteht damit die Möglichkeit, geringfügige Abweichungen vom kosmologischen Standardmodell in kontrollierter und gut motivierter Art und Weise zu realisieren. Solche Abweichungen stellen eines der zentralen Themen dieser Arbeit dar. Eine wichtige Besonderheit der eben erwähnten Theorien ist die Annahme, dass neben den drei uns bekannten Raumdimensionen eine Vielzahl weiterer existieren könnte. Diese Zusatzdimensionen könnten vor uns verborgen sein, wenn sie kompakt sind und nur extrem mikroskopische Ausmaße haben, so dass sie sich weit unterhalb des Auflösungsvermögens heutiger Experimente befinden. Mechanismen, welche eine solche mikroskopische Gestalt dynamisch erklären könnten, sind in den gängigen Theorien auf ganz natürliche Weise verfügbar. Typischerweise ergibt sich daraus das eben gezeichnete Bild einer ausgedehnten "Landschaft" verschiedener Konfigurationen. Die Vakuumzustände können sich nun auch in der Anzahl und Gestalt der mikroskopischen Dimensionen unterscheiden, da nur die Gesamtzahl an Raumdimensionen von der Theorie vorgegeben wird. Übergänge zwischen diesen Zuständen können also dazu führen, dass neue Raumrichtungen entstehen, indem mikroskopische Dimensionen sich plötzlich aufblähen, alte Raumrichtungen verschwinden, indem sie sich spontan ins Mikroskopische zusammenziehen, oder dass die Konfiguration der Raumdimensionen auf eine noch kompliziertere Art und Weise verändert wird. Aus Sicht des neu entstehenden "Universums" in der Blase führt ein solcher Prozess effektiv zu einem anisotropen Hintergrund - vereinfacht ausgedrückt können die neu entstehenden Raumrichtungen eine Vorzugsrichtung ausweisen. Wenn unser 3+1 dimensionales beobachtbares Universum in einem solchen Prozess entstanden ist, kann man vermuten, dass sich in kosmologischen Beobachtungen Hinweise auf eine Vorzugsrichtung finden lassen müssten. Zum Beispiel könnten zwei Raumrichtungen gekrümmt wie eine Kugeloberfläche sein, während die dritte Richtung keinerlei Krümmung aufweist. Indem ich ein Tunnelszenario benutze, um die Anfangsbedingungen festzulegen, gelingt es mir zu zeigen wie die primordialen Spuren eines solchen anisotropen Universums prinzipiell auszusehen haben und führe eine Berechnung anhand eines speziellen Beispiels explizit vor. Eine geringfügige Abweichung von Isotropie hat ebenfalls phänomenologische Auswirkungen auf die spätere Entwicklung des Universums. Ich gehe auf die wichtigsten Effekte ein und zeige außerdem, dass Rückkopplung dynamisch relevant sein kann. Insbesondere kann sich unter gewissen Voraussetzungen ein Ungleichgewicht der Druckkräfte in verschiedenen Komponenten der "kosmischen Flüssigkeit" aufbauen, das insgesamt zu einer dynamischen Isotropisierung des kollektiven Energie-Impuls-Tensors führt. Dieser Mechanismus wird ebenfalls anhand eines konkreten Beispiels beleuchtet. KW - Kosmologie KW - Anisotropes Universum KW - Quantenkosmologie KW - Bianchi-Kosmologie KW - Anisotropic Universe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65908 ER -