TY - THES A1 - Reuter, Christian Steffen T1 - Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin T1 - Entwicklung eines primären humanen Hautinfektionsmodells basierend auf Gewebezüchtung zur Erforschung der Pathogenese von Tsetsefliegen-übertragenen Afrikanischen Trypanosomen in der Säugetierhaut N2 - Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods. N2 - Zahlreiche Arthropoden wie Stechmücken, Zecken, Wanzen und Fliegen sind Überträger für krankheitserregende Parasiten, Bakterien und Viren. Hierzu gehört der einzellige Parasit Trypanosoma brucei (T. brucei), welcher durch Tsetsefliegen übertragen wird und die Afrikanische Trypanosomiasis bei Menschen und Tieren verursacht. Der Entwicklungszyklus des Parasiten in der Fliege ist komplex und endet in der Speicheldrüse mit der Differenzierung in das metazyklische Lebensstadium. Diese metazyklischen Formen werden durch den Biss der blutsaugenden Tsetsefliege in die dermale Hautschicht des Säugetierwirts injiziert. Die zellzyklusarretierten metazyklischen Formen werden in der Dermis aktiviert und der Widereintritt in den Zellzyklus sowie die Differenzierung zu proliferativen Trypanosomen eingeleitet. Anschließend breitet sich der Parasit systemisch im Säugetierwirt aus. Obwohl T. brucei bereits seit Jahrzehnten erforscht wird, ist nur sehr wenig über das frühe Infektionsgeschehen in der Haut bekannt. Der genaue Zeitpunkt und die Mechanismen, die der Differenzierung des Parasiten in der Haut zugrunde liegen, sind unbekannt. Ebenso wurden die proliferativen Trypanosomen in der Haut bisher nur unzureichend charakterisiert. Das Verständnis über die ersten Schritte einer Infektion ist jedoch von entscheidender Bedeutung für die Entwicklung von neuen Strategien, die die Krankheitsentstehung und deren Fortschreiten verhindern sollen. Ein großes Hindernis bei der Erforschung der humanen Afrikanischen Trypanosomiasis ist der Mangel an geeigneten Infektionsmodellen, die den Krankheitsverlauf authentisch nachbilden. Außerdem werden für die Erzeugung der infektiösen metazyklischen Parasiten Tsetsefliegen benötigt, die aufwändig zu züchten sind. Tiermodelle haben es ermöglicht - hauptsächlich Mäuse -, viele Erkenntnisse über die Pathogenese von Trypanosomen im Säugetierwirt zu erlangen. Allerdings wurden diese überwiegend durch Nadelinjektion in den Bauchraum oder die Kaudalvene infiziert, wodurch die Haut als erste Eintrittspforte umgangen wurde. Darüber hinaus lassen Tiermodelle nicht immer Rückschlüsse auf den Infektionsverlauf beim Menschen zu. Zusätzlich erschwert die geringe Anzahl von metazyklischen Parasiten, die von Tsetsefliegen injiziert werden, die Isolation, Nachweis und Untersuchung im tierischen Wirt. Das Ziel der vorliegenden Arbeit war es, ein rekonstruiertes menschliches Hautäquivalent zu entwickeln und als Infektionsmodell zu validieren, um die Entwicklung von natürlich übertragenen metazyklischen Parasiten von T. brucei in der Säugetierhaut zu untersuchen. Der erste Teil dieser Arbeit beschreibt die Entwicklung und Charakterisierung eines primären menschlichen Hautäquivalents mit verbesserten mechanischen Eigenschaften. Zu diesem Zweck wurde ein computergesteuertes Kompressionssystem entworfen und hergestellt. Dieses System ermöglichte die gleichzeitige Verbesserung der mechanischen Stabilität von zwölf kollagenbasierten dermalen Äquivalenten durch plastische Kompression, die mittels Rheologie evaluiert wurden. Die verbesserten dermalen Äquivalente dienten als Fundament für die Erzeugung der Hautäquivalente und reduzierten deren Kontraktion und Gewichtsverlust während der Gewebebildung. Dadurch wurde ein hohes Maß an Standardisierung und Reproduzierbarkeit erreicht. Die Hautäquivalente wurden durch immunhistochemische und histologische Techniken charakterisiert und bildeten wichtige anatomische, zelluläre und funktionelle Aspekte der nativen menschlichen Haut nach. Des Weiteren wurde die zelluläre Heterogenität durch Einzelzell-RNA-Sequenzierung untersucht. Mit dieser Technik wurde ein umfangreiches Spektrum an extrazellulären Matrix-assoziierten Genen identifiziert, die von verschiedenen Zellsubpopulationen in der künstlichen Haut exprimiert werden. Zusätzlich wurden experimentelle Bedingungen etabliert, damit Tsetsefliegen eingesetzt werden konnten, um die Hautäquivalente auf natürlichem Weg mit Trypanosomen zu infizieren. Im zweiten Teil dieser Arbeit wurde die Entwicklung der Trypanosomen in der künstlichen Haut im Detail untersucht. Dies umfasste die Etablierung von Methoden zur erfolgreichen Isolierung der Trypanosomen aus der Haut, um deren Proteinsyntheserate, Zellzyklus- und Stoffwechselstatus, sowie Morphologie und Transkriptom zu bestimmen. Zusätzlich wurden Mikroskopietechniken zur Untersuchung der Trypanosomenmotilität und migration in der Haut optimiert. Nach der Injektion in die künstliche Haut durch Tsetsefliegen wurden die metazyklischen Parasiten schnell aktiviert und etablierten innerhalb eines Tages eine proliferative Population. Dieser Entwicklungsprozess wurde begleitet von (I) einer Reaktivierung der Proteinsynthese, (II) einem Wiedereintritt in den Zellzyklus, (III) einer Veränderung der Morphologie und (IV) einer erhöhten Motilität. Des Weiteren wurden diese Beobachtungen mit potentiell zugrundeliegenden entwicklungsbiologischen Mechanismen in Verbindung gebracht, indem eine Einzelzell RNA-Sequenzierung der Trypanosomen zu fünf verschiedenen Zeitpunkten nach der Infektion durchgeführt wurde. Nach der ersten proliferativen Phase traten die Tsetse-übertragenen Trypanosomen in der Haut in ein reversibles Ruhestadium ein. Diese ruhenden Trypanosomen waren durch eine sehr langsame Zellteilung, einen stark reduzierten Stoffwechsel und ein Transkriptom gekennzeichnet, dass sich deutlich von dem der injizierten metazyklischen Formen und der ersten proliferativen Trypanosomen unterschied. Durch Nachahmung der Migration von der Haut in den Blutkreislauf konnte dieser Phänotyp reaktiviert werden und die Parasiten kehrten in einen aktiven, proliferierenden Zustand zurück. Unter Berücksichtigung, dass vorangegangene Forschungsarbeiten die Haut als anatomisches Reservoir für T. brucei während des Krankheitsverlaufs identifiziert haben, ist anzunehmen, dass das Ruheprogramm eine authentische Facette im Verhalten des Parasiten in einem infizierten Wirt darstellt. Zusammenfassend zeigt diese Arbeit, das primäre menschliche Hautäquivalente eine neue und vielversprechende Möglichkeit bieten, vektorübertragene Parasiten unter naturnahen Bedingungen als Alternative zu Tierversuchen zu untersuchen. Durch die Verwendung des natürlichen Infektionsweges - dem Biss einer infizierten Tsetsefliege -, konnten die frühen Prozesse einer Trypanosomen-Infektion mit noch nie dagewesener Detailtiefe nachvollzogen werden. Des Weiteren könnte der hier erbrachte Nachweis einer ruhenden, hautresidenten Trypanosomen-Population die Persistenz von T. brucei in der Haut von aparasitämischen und asymptomatischen Personen erklären. Dies könnte eine wichtige Rolle bei der Aufrechterhaltung einer Infektion über lange Zeiträume spielen. KW - Trypanosoma brucei KW - Tissue Engineering KW - Trypanosomiasis KW - 3D-Zellkultur KW - Transkriptomanalyse KW - developmental differentiation KW - skin equivalent KW - artificial human skin KW - single-cell RNA sequencing KW - quiescence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251147 ER - TY - THES A1 - Alzheimer, Mona T1 - Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\) T1 - Entwicklung dreidimensionaler Infektionsmodelle basierend auf Gewebezüchtung zur Erforschung der Pathogenese von \(Campylobacter\) \(jejuni\) N2 - Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases. N2 - In der heutigen Zeit tragen insbesondere durch pathogene Mikroorganismen ausgelöste Infektionskrankheiten zur sozioökonomischen Belastung bei. Obwohl bereits jahrzehntelang an der Entstehung von Infektionskrankheiten geforscht wird, bleiben in zahlreichen Fällen die genauen Mechanismen, welche an den vielfältigen Interaktionen zwischen Pathogen und Wirt beteiligt sind, unbeschrieben. Gerade deshalb bleibt es für Wissenschaftler weltweit eine Herausforderung, neue Strategien zur Untersuchung des molekularen Kontexts von Infektionskrankheiten zu entwickeln, um präventive oder zumindest anti-infektive Maßnahmen ergreifen zu können. In den meisten Fällen ist jedoch das Fehlen geeigneter Infektionsmodelle, mit denen der Krankheitsverlauf im Menschen authentisch nachgestellt werden kann, eines der größten Hindernisse um detailliertes Wissen darüber gewinnen zu können wie bakterielle Pathogene die Krankheit auslösen. Zahlreiche Studien sind dabei auf Tiermodelle angewiesen, um die komplexen zeitlichen Abläufe zwischen Wirt und Pathogen im menschlichen Körper nachzuahmen. Während diese Modelle in hohem Maß dazu beigetragen haben, Aufschluss über diese Abläufe zu geben, sind sie doch sehr kostenintensiv, mit ethischen Bedenken behaftet und können nicht immer die Folgen einer Infektion im menschlichen Patienten vorhersagen. Seit Jahrzehnten werden daher alternativ in-vitro 2D Zellkultursysteme eingesetzt, um den Verlauf von Infektionskrankheiten zu erforschen, welche die Bedingungen im menschlichen Wirt wiederspiegeln sollen. Diese auf Zelllinien basierenden Modelle sind essentiell in der Entdeckung von Virulenzfaktoren diverser Pathogene, aber auch in der Aufklärung von wirtsspezifischen Abwehrmechanismen. Dennoch fehlt ihnen die morphologische und zelluläre Komplexität von intaktem menschlichen Gewebe. Dadurch sind die Erkenntnisse, die mit diesen Systemen über Infektionsverläufe gewonnen werden können, limitiert. Die vorgelegte Arbeit konzentriert sich auf die Etablierung und Weiterentwicklung intestinaler, humaner Zellkulturmodelle, um dreidimensionales Gewebe in vitro zu rekonstruieren mit dem Ziel, Pathogenese-beeinflussende Prozesse des zoonotischen Bakteriums C. jejuni nachzustellen. Das Fachgebiet der Gewebezüchtung wird üblicherweise für rekonstruktive Medizin eingesetzt und bietet exzellente Mittel zur in-vitro Herstellung organspezifischer Zellkulturmodelle, welche die unverkennbare Mikroarchitektur humanen Gewebes realistisch nachempfinden können. Die in dieser Arbeit verwendeten Modelle basieren auf einem extrazellulären Matrixgerüst, das aus der Dezellularisierung von Schweinedarm gewonnen wurde. Durch die Wiederbesiedelung mit human Kolonzellen und der Kultivierung unter dynamischen Bedingungen entwickelte sich ein hochpolarisiertes mucosales Epithel, das durch funktionale Zell-Zell-Kontakte (tight und adherens junctions) aufrechterhalten wird. Während andere in-vitro Infektionssysteme meist durch die Präsenz einer flachen Zellschicht limitiert werden, entwickelt das in dieser Arbeit eingeführte Gewebemodell die für den menschlichen Dünndarm charakteristische Architektur aus Villi und Krypten. Zunächst wurden experimentelle Bedingungen für die Infektion eines zuvor entwickelten, statisch kultivierten Dünndarmmodells mit C. jejuni etabliert. Dies beinhaltete die erfolgreiche Isolierung koloniebildender Einheiten, die Messung der epithelialen Barrierefunktion, sowie immunhistochemische und histologische Färbetechniken. Dadurch konnte die Anzahl der Bakterien sowie deren Translokalisierung über das polarisierte Epithel während des Infektionsprozesses nachvollzogen werden. Außerdem konnte die Beeinträchtigung von Zell-Zell-Kontakten durch konfokale Mikroskopie und Permeabilitätsmessungen der epithelialen Barriere beobachtet werden. Neben der Bestimmung der Kolonisierungsrate von C. jejuni Isolaten und der dadurch hervorgerufenen spezifischen Zerstörung der epithelialen Barriere konnten die Bakterien auch innerhalb der 3D Mikroarchitektur des Gewebemodells lokalisiert werden. Außerdem konnte im Rahmen der 3D Gewebeumgebung beobachtet werden, dass Pathogenese-relevante Phänotypen von C. jejuni Mutantenstämmen im Vergleich zu konventionellen in-vitro 2D Zellschichten abwichen, diese aber dafür mit den in-vivo gemachten Beobachtungen übereinstimmten. Darüber hinaus wies die genomweite Suche einer C. jejuni Mutantenbibliothek signifikante Unterschiede zwischen bakteriellen Faktoren, die für die Interaktion mit nicht polarisierten Wirtszellen oder dem hochprismatischen Epithel des Gewebemodells bedeutsam oder entbehrlich waren, auf. Die Aufklärung der Funktion einiger bisher nicht charakterisierter Faktoren, die zu einer effizienten Kolonisierung menschlichen Gewebes beitragen, verspricht eine faszinierende Aufgabe für die zukünftige Forschung zu werden. Die vorderste Verteidigungslinie gegen eindringende Pathogene bildet die schützende, viskoelastische Mukusschicht, die mukosale Oberflächen entlang des menschlichen Gastrointestinaltrakts überzieht. Mit der Entwicklung eines mukusproduzierenden Gewebemodells in der hier vorgelegten Arbeit gelang ein entscheidender Schritt zur Erforschung der Wechselbeziehungen zwischen bakteriellen Pathogenen und wirtsspezifischen Muzinen. Während des Infektionsverlaufs wurde das unterliegende Epithel durch die Anwesenheit der Mukusschicht vor der Zerstörung durch die Mikroben geschützt und eine erhöhte bakterielle Belastung verhindert. Darüber hinaus liefern die Resultate dieser Arbeit einen in-vitro Nachweis für den bakteriellen Vorteil einer spiralförmigen Morphologie, um muköse Oberflächen zu besiedeln. Zusammenfassend unterstreicht diese Arbeit das Potential der hier entwickelten Gewebemodelle, entscheidende Eigenschaften des menschlichen Darms in einem leicht zugänglichen in-vitro Infektionsmodell zu vereinigen. Der Einsatz dieser Modelle im Rahmen der Infektionsforschung bewies deren Fähigkeit in-vivo beobachtete Infektionsverläufe widerzuspiegeln. Während diese Infektionsmodelle bereits organotypische Architektur und hochprismatische Zellmorphologie aufweisen, ist ihre Darstellung von menschlichem Gewebe noch nicht perfekt. Durch den Einsatz von humanen Primär- und Immunzellen wird es in Zukunft möglich sein, noch umfassendere Modellsysteme zu entwickeln, die komplexe multizelluläre Netzwerke von in-vivo Geweben aufweisen. Nichtsdestotrotz verdeutlicht die hier vorgelegte Arbeit wie wichtig es ist, die Interaktionen zwischen Wirt und Pathogen innerhalb von Infektionsmodellen zu erforschen, welche die natürliche Wirtsumgebung wiedergeben. Dies spielt eine entscheidende Rolle, um die Entstehung von Infektionskrankheiten nachvollziehen und ihnen entgegenwirken zu können. KW - Campylobacter jejuni KW - Tissue Engineering KW - Small RNA KW - 3D tissue model KW - Bacterial infection KW - 3D Gewebemodelle KW - Bakterielle Infektion KW - 3D cell culture KW - Infection models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193440 ER - TY - THES A1 - Schmidt [geb. Schmid], Freia Florina T1 - Ein dreidimensionales kutanes Melanommodell für den Einsatz in der präklinischen Testung T1 - A three-dimensional cutaneous melanoma model for use in preclinical testing N2 - Das maligne Melanom nimmt als Tumorerkrankung mit hoher Metastasierungsrate und steigenden Inzidenzraten bei höchster Mortalität aller Hauttumoren eine zunehmende Bedeutung in der modernen Onkologie ein. Frühzeitige Diagnosemöglichkeiten und moderne Behandlungen konnten das Überleben der Patienten bereits erheblich verbessern. Jedoch besteht nach wie vor Bedarf an geeigneten Modellen, um die Melanomprogression vollständig zu verstehen und neue wirksame Therapien zu entwickeln. Hierfür werden häufig Tiermodelle verwendet, diese spiegeln jedoch nicht die menschliche Mikroumgebung wider. Zweidimensionalen Zellkulturen fehlen dagegen entscheidende Elemente der Tumormikroumgebung. Daher wurde in dieser Arbeit ein dreidimensionales epidermales Tumormodell des malignen Melanoms, welches aus primären humanen Keratinozyten und verschiedenen Melanomzelllinien besteht, entwickelt. Die eingesetzten Melanomzelllinien variieren in ihren Treibermutationen, wodurch das Modell in der Lage ist, Wirkstoffe zu untersuchen, die spezifisch auf diese Mutationen wirken. Mit Techniken des Tissue Engineerings konnte ein dreidimensionales Hautmodell aufgebaut werden, das alle charakteristischen Schichten der Epidermis aufweist und im Bereich des stratum basale Melanomcluster ausbildet. Diese reichen je nach Größe und Ausdehnung bis in suprabasale Epidermisschichten hinein. Die Tumor-Histopathologie, der Tumorstoffwechsel sowie tumorassoziierte Proteinsekretionen ließen sich im in vitro Modell nachweisen. Darüber hinaus konnte ein Protokoll entwickelt werden, mit dem einzelne Zellen aus den Modellen reisoliert werden können. Dies ermöglichte es, den Proliferationszustand innerhalb des jeweiligen Modells zu charakterisieren und die Wirkung von Antitumortherapien gezielt zu bewerten. Die Anwendbarkeit als Testsystem im Bereich der Tumortherapeutika wurde mit dem in der Klinik häufig verwendeten v-raf-Maus-Sarkom-Virus-Onkogen-Homolog B (BRAF)-Inhibitor Vemurafenib demonstriert. Der selektive BRAF-Inhibitor reduzierte erfolgreich das Tumorwachstum in den Modellen mit BRAF-mutierten Melanomzellen, was durch eine Verringerung der metabolischen Aktivität, der proliferierenden Zellen und des Glukoseverbrauchs gezeigt wurde. Für die Implementierung des Modells in die präklinische Therapieentwicklung wurde B-B-Dimethylacrylshikonin, ein vielversprechender Wirkstoffkandidat, welcher einen Zellzyklusarrest mit anschließender Apoptose bewirkt, im Modell getestet. Bei einer Anwendung der Modelle im Bereich der Testung topischer Behandlungen ist eine Barrierefunktion der Modelle notwendig, die der in vivo Situation nahe kommt. Die Barriereeigenschaften der Hautäquivalente wurden durch die Melanomzellen nachweislich nicht beeinflusst, sind aber im Vergleich zur in vivo Situation noch unzureichend. Eine signifikante Steigerung der Hautbarriere konnte durch die Bereitstellung von Lipiden und die Anregung hauteigener Regenerationsprozesse erreicht werden. Über den Nachweis des transepidermalen Wasserverlusts konnte eine Messmethode zur nicht-invasiven Bestimmung der Hautbarriere etabliert und über den Vergleich zur Impedanzspektroskopie validiert werden. Hierbei gelang es, erstmals die Korrelation der Hautmodelle zur in vivo Situation über ein solches Verfahren zu zeigen. Das entwickelte epidermale Modell konnte durch die Integration eines dermalen Anteils und einer Endothelzellschicht noch weiter an die komplexe Struktur und Physiologie der Haut angepasst werden um Untersuchungen, die mit der Metastierung und Invasion zusammenhängen, zu ermöglichen. Die artifizielle Dermis basiert auf einem Kollagen-Hydrogel mit primären Fibroblasten. Eine dezellularisierte Schweinedarmmatrix ließ sich zur Erweiterung des Modells um eine Endothelzellschicht nutzen. Dabei wanderten die primären Fibroblasten apikal in die natürliche Schweindarmmatrix ein, während die Endothelzellen basolateral eine geschlossene Schicht bildeten. Die in dieser Arbeit entwickelten Gewebemodelle sind in der Lage, die Vorhersagekraft der in vitro Modelle und die in vitro - in vivo Korrelation zu verbessern. Durch die Kombination des Melanommodells mit einer darauf abgestimmten Analytik wurde ein neuartiges Werkzeug für die präklinische Forschung zur Testung von pharmazeutischen Wirkstoffen geschaffen. N2 - Malignant melanoma, as a tumor disease with a high metastasis rate and rising incidence rates with the highest mortality of all skin tumors, is assuming increasing importance in modern oncology. Early diagnosis and modern treatments significantly improved patient survival. There is still an unmet need for appropriate models to fully understand melanoma progression and to develop new effective therapies. Animal models are widely used but do not reflect the human microenvironment, while two-dimensional cell cultures lack crucial elements of this tumor microenvironment. Therefore, a three-dimensional epidermal tumor model of malignant melanoma consisting of primary human keratinocytes and various melanoma cell lines was developed in this work. The melanoma cell lines vary in their driver mutations, enabling the model to investigate compounds specifically designed to target one mutation. Tissue engineering techniques were used to generate a three-dimensional skin model that shows all characteristic layers of the epidermis and forms melanoma clusters in the stratum basale. Depending on size and extension, these extend into suprabasal epidermal layers. Tumor histopathology, tumor metabolism, and tumor-associated protein secretions could be demonstrated in the in vitro model. In addition, a protocol could be developed to reisolate single cells from the models. This made it possible to characterize the proliferation state within the respective model and to specifically evaluate the effect of antitumor therapies. Applicability as a test system in the field of tumor therapeutics was demonstrated with the v-raf mouse sarcoma virus oncogene homolog B (BRAF) inhibitor commonly used in the clinic. This selective BRAF inhibitor successfully reduced tumor growth in models with BRAF-mutated melanoma cells, indicated by a reduction in metabolic activity, proliferating cells, and glucose consumption. For the implementation of the model in preclinical development, B-B-dimethylacrylshikonin, a promising drug candidate, which induces cell cycle arrest followed by apoptosis, was tested in the model. An application of the models in the field of testing topical treatments requires a barrier function of the models close to the in vivo situation. The barrier properties of the skin equivalents were demonstrably not influenced by the melanoma cells, but are still insufficient compared to the in vivo situation. A significant increase in the skin barrier could be achieved by providing lipids and stimulating the skin's own regeneration processes. A measurement method for the non-invasive determination of the skin barrier was established by detection of transepidermal water loss and validated by comparison with impedance spectroscopy. For the first time, the correlation of the skin models to the in vivo situation was demonstrated by such a method. The developed epidermal model could be further adapted to the complex structure and physiology of the skin by integrating a dermal portion and an endothelial cell layer to allow studies related to metastasis and invasion. The artificial dermis is based on a collagen hydrogel with primary fibroblasts. A decellularized porcine intestinal matrix could be used to extend the model with an endothelial cell layer. Here, the primary fibroblasts migrated apically into the natural porcine intestinal matrix, while the endothelial cells formed a closed layer basolaterally. The tissue models developed in this work are able to improve the predictive power of the in vitro models and the in vitro - in vivo correlation. By combining the melanoma model with matched analytics, a novel tool for preclinical research for testing of pharmaceutical agents was established. KW - Tissue Engineering KW - Melanom KW - Hautmodell KW - Alternative zum Tierversuch Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-329255 ER - TY - THES A1 - Altmann, Stephan T1 - Characterization of Metabolic Glycoengineering in Mesenchymal Stromal Cells for its Application in thermoresponsive Bioinks T1 - Charakterisierung von Metabolic Glycoengineering in mesenchymalen Stromazellen für die Anwendung in thermoresponsiven Biotinten N2 - This work developed during the first funding period of the subproject B05 in the framework of the interdisciplinary research consortium TRR 225 ‘From the Fundamentals of Biofabrication toward functional Tissue Models’ and was part of a cooperation between the Orthopedic Department represented by Prof. Dr. Regina Ebert and the Institute of Organic Chemistry represented by Prof. Dr. Jürgen Seibel. This project dealed with cellular behavior during the bioprinting process and how to influence it by modifying the cell glycocalyx with functional target molecules. The focus was on the impact of potential shear stress, that cells experience when they get processed in thermoresponsive bioinks, and a way to increase the cell stiffness via metabolic glycoengineering to attenuate shear forces. For the characterization of the metabolic glycoengineering, four different peracetylated and four non-acetylated modified monosaccharides (two mannose and two sialic acid sugars) were tested in primary human mesenchymal stromal cells (hMSC) and telomerase-immortalized hMSC (hMSC-TERT). Viability results demonstrated a dose-dependent correlation for all sugars, at which hMSC-TERT seemed to be more susceptible leading to lower viability rates. The assessment of the incorporation efficiencies was performed by click chemistry using fluorescent dyes and revealed also a dose-dependent correlation for all mannose and sialic acid sugars, while glucose and galactose variants were not detected in the glycocalyx. However, incorporation efficiencies were highest when using mannose sugars in the primary hMSC. A subsequent analysis of the temporal retention of the incorporated monosaccharides showed a constant declining fluorescence signal up to 6 d for azido mannose in hMSC-TERT, whereas no signal could be detected for alkyne mannose after 2 d. Investigation of the differentiation potential and expression of different target genes revealed no impairment after incubation with mannose sugars, indicating a normal phenotype for hMSC-TERT. Following the successful establishment of the method, either a coumarin derivative or an artificial galectin 1 ligand were incorporated into the cell glycocalyx of hMSC-TERT as functional target molecule. The biophysical analysis via shear flow deformation cytometry revealed a slightly increased cell stiffness and lowered fluidity for both molecules. A further part of this project aimed to control lectin-mediated cell adhesion by artificial galectin 1 ligands. As that hypothesis was settled in the work group of Prof. Dr. Jürgen Seibel, this work supported with an initial characterization of galectin 1 as part of the hMSC biology. A stable galectin 1 expression at gene and protein level in both hMSC and hMSC-TERT could be confirmed, at which immunocytochemical stainings could detect the protein only in the glycocalyx. The treatment of hMSC-TERT with a galectin 1 ligand in different concentrations did not show an altered gene expression of galectin 1. However, these first data in addition to the investigation of stiffness confirmed the applicability of specific and artificial IV galectin 1 ligands in biofabrication approaches to alter cell properties of hMSC. To conclude, metabolic glycoengineering has been successfully implemented in hMSC and hMSC-TERT to introduce glycocalyx modifications which reside there for several days. A proof of concept was carried out by the increase of cell stiffness and fluidity by the incorporation of a coumarin derivative or an artificial galectin 1 ligand. For the characterization of shear stress impact on cells after printing in thermoresponsive bioinks, the processing of hMSC-TERT (mixing or additionally printing) with Pluronic F127 or Polyoxazoline-Polyoxazine (POx-POzi) polymer solution was investigated. While there were no changes in viability when using POx-POzi bioink, processing with Pluronic F127 indicated slightly lower viability and increased apoptosis activity. Assessment of cellular responses to potential shear stress showed no reorganization of the cytoskeleton independent of the bioink, but highly increased expression of the mechanoresponsive proto-oncogene c Fos which was more pronounced when using Pluronic F127 and just mixed with the bioinks. Interestingly, processing of the mechanoresponsive reporter cell line hMSC-TERT-AP1 revealed slightly elevated mechanotransduction activity when using POx-POzi polymer and just mixed with the bioinks as well. In conclusion, hMSC-TERT embedded in thermoresponsive bioinks might shortly experience shear stress during the printing process, but that did not lead to remarkable cell damage likely due to the rheological properties of the bioinks. Furthermore, the printing experiments also suggested that cells do not sense more shear stress when additionally printed. N2 - Diese Arbeit entstand aus dem Projekt B05 während der ersten Förderperiode im Rahmen des interdisziplinären Sonderforschungsbereiches TRR 225 „Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen“ und beinhaltete eine Kooperation zwischen dem Lehrstuhl für Orthopädie repräsentiert durch Prof. Dr. Regina Ebert und dem Institut für Organische Chemie repräsentiert durch Prof. Dr. Jürgen Seibel. Das Projekt beschäftigte sich mit den Auswirkungen des 3D Drucks auf Zellen während und nach dem Druck mit thermoresponsiven Biotinten. Hierbei lag der Fokus auf Scherkräften, die Zellen während des Drucks erfahren, und der Möglichkeit, deren nachteilige Auswirkungen durch gezielte Erhöhung der Zellsteifigkeit via Metabolic Glycoengineering zu minimieren. Zur Etablierung dieser Methode wurden vier azetylierte sowie vier nicht-azetylierte modifizierte Einfachzucker (zwei Mannosen und zwei Sialinsäuren) hinsichtlich ihrer Zellkompatibilität und Einbaurate in primären humanen mesenchymalen Stromazellen (hMSC) und Telomerase-immortalisierten hMSC (hMSC-TERT) charakterisiert. Bei der Viabilität zeigte sich für alle untersuchten Zucker ein konzentrationsabhängiges Verhalten, wobei die hMSC-TERT generell empfindlicher reagierten. Eine Untersuchung von verschiedenen Zielgenen nach Zuckerinkubation gab keine Hinweise auf biologisch veränderte Expressionsmuster und auch das phänotypische Differenzierungspotenzial (adipogen und osteogen) blieb erhalten. Der Einbau der modifizierten Zucker in Proteoglykane sowie Glykoproteine der Glykokalyx wurde mikroskopisch mittels Fluoreszenzfarbstoffen charakterisiert. Dabei zeigte sich ebenfalls ein konzentrationsabhängiges Verhalten für alle Mannosen und Sialinsäuren, wohingegen die Glukose- und Galaktosevarianten nicht nachgewiesen werden konnten. Die Mannosezucker zeigten die höchsten Einbauraten, welche in primären hMSC noch stärker ausfielen als in hMSC-TERT. Ein Langzeitversuch zur Beurteilung der zeitlichen Stabilität der Glykokalyxmodifikation konnte für die azetylierte Azidomannose ein abnehmendes Fluoreszenzsignal bis zum sechsten Tag nach der Klickreaktion ermitteln. Im Gegensatz dazu konnte die azetylierte Alkinmannose bereits ab dem zweiten Tag nicht mehr nachgewiesen werden. Nach der erfolgreichen Optimierung der Methodik wurde der Effekt eines Kumarinderivates oder eines künstlichen Galektin 1 Liganden auf die Zellsteifigkeit sowie die -fluidität mit Hilfe der Deformationszytometrie untersucht. Die Modifikation der Glykokalyx mit beiden untersuchten Molekülen führte zu einer leichten Erhöhung der Steifigkeit in Kombination mit einer leicht erniedrigten Fluidität. In einem weiteren Teil des Projekts sollte die Lektin-vermittelte Adhäsion von Zellen an Polymerstränge initiiert werden, indem sie mit künstlichen Galektin 1 Liganden modifiziert werden. Da diese Hypothese in der Forschungsgruppe von Prof. Dr. Jürgen Seibel bearbeitet wurde, unterstützte diese Arbeit mit einer anfänglichen Charakterisierung von Galektin 1 als Teil der hMSC Zellbiologie. In hMSC und hMSC-TERT konnte eine VI stabile Expression auf Gen- und Proteinebene nachwiesen werden, wobei das Lektin in der Glykokalyx lokalisiert war. Ein Inkubationsversuch mit einem spezifischen Liganden zeigte in hMSC-TERT unabhängig von der Konzentration keine veränderte Galektin 1 Genexpression. In Verbindung mit den Steifigkeitsuntersuchungen bestätigt diese anfängliche Charakterisierung die Anwendbarkeit von künstlichen Galektin 1 Liganden in der Biofabrikation um hMSC zu modifizieren. Somit konnte gezeigt werden, dass Metabolic Glycoengineering sich für die gezielte Einbringung von Molekülen in die Zellglykokalyx von primären hMSC sowie der entsprechenden TERT-Zelllinie zur mittelfristigen Modifikation eignet. Dies wurde durch einen funktionellen Ansatz bestätigt, indem die Zellsteifigkeit und -fluidität durch den Einsatz zwei verschiedener Moleküle erwartungsgemäß beeinflusst wurden. Für die Charakterisierung der Scherstressauswirkungen auf Zellen nach 3D Druck in thermoresponsiven Biotinten wurden hMSC und hMSC-TERT in Pluronic F127 oder Polyoxazolin-Polyoxazin (POx-POzi) Polymerlösung prozessiert (gemischt oder zusätzlich verdruckt) und direkt danach analysiert. Während letztere die Viabilität nicht verschlechterte, zeigten hMSC-TERT nach Verarbeitung in Pluronic F127 eine leicht erniedrigte Viabilität sowie leicht erhöhte Apoptoseraten. Im Zuge von Analysen der Mechanotransduktion und deren Auswirkungen konnte unabhängig von der Biotinte sowie der Behandlung kein Umbau des Zytoskeletts immunzytochemisch nachgewiesen werden. Im Gegensatz dazu zeigten Genexpressionsanalysen eine starke Hochregulierung des mechanoresponsiven Proto-Onkogens c Fos unter allen Bedingungen, wobei diese stärker ausfiel bei Verwendung der Pluronic F127 Biotinte und nur nach Mischen (gilt für beide Biotinten). Um den Scherstress quantitativ zu beurteilen, wurde die Reporterzelllinie hMSC-TERT-AP1 verwendet, welche das Auslesen der Mechanotransduktion durch eine gekoppelte Luziferase-Proteinexpression ermöglicht. Interessanterweise zeigte sich eine leicht erhöhte Luziferaseaktivität nur nach Verarbeitung mit der POx-POzi Polymerlösung, welche stärker ausfiel wenn die Zellen mit der Biotinte lediglich gemischt wurden. Zusammengenommen bestätigten die Ergebnisse die zelluläre Wahrnehmung von Scherstress in thermoresponsiven Biotinten, allerdings scheint dieser nur schwache Auswirkungen auf die Zellen zu haben, was auf die rheologischen Eigenschaften beider untersuchten Biotinten zurückgeführt werden kann. Die Druckergebnisse legten außerdem nahe, dass die Zellen nicht mehr Scherstress erfahren, wenn sie zusätzlich verdruckt wurden. KW - Glykobiologie KW - Glykokalyx KW - Tissue Engineering KW - Galectine KW - Metabolic Glycoengineering KW - Biofabrication KW - Galectin 1 KW - Glycocalyx KW - Shear Stress KW - Scherstress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291003 ER - TY - THES A1 - Gensler, Marius E. T1 - Simultaneous printing of tissue and customized bioreactor T1 - Simultanes Drucken von Gewebe und angepasstem Bioreaktor N2 - Additive manufacturing processes such as 3D printing are booming in the industry due to their high degree of freedom in terms of geometric shapes and available materials. Focusing on patient-specific medicine, 3D printing has also proven useful in the Life Sciences, where it exploits the shape fidelity for individualized tissues in the field of bioprinting. In parallel, the current systems of bioreactor technology have adapted to the new manufacturing technology as well and 3D-printed bioreactors are increasingly being developed. For the first time, this work combines the manufacturing of the tissue and a tailored bioreactor, significantly streamlining the overall process and optimally merging the two processes. This way the production of the tissues can be individualized by customizing the reactor to the tissue and the patient-specific wound geometry. For this reason, a common basis and guideline for the cross-device and cross-material use of 3D printers was created initially. Their applicability was demonstrated by the iterative development of a perfusable bioreactor system, made from polydimethylsiloxane (PDMS) and a lignin-based filament, into which a biological tissue of flexible shape can be bioprinted. Cost-effective bioink-replacements and in silico computational fluid dynamics simulations were used for material sustainability and shape development. Also, nutrient distribution and shear stress could be predicted in this way pre-experimentally. As a proof of functionality and adaptability of the reactor, tissues made from a nanocellulose-based Cellink® Bioink, as well as an alginate-based ink mixed with Me-PMeOx100-b-PnPrOzi100-EIP (POx) (Alginate-POx bioink) were successfully cultured dynamically in the bioreactor together with C2C12 cell line. Tissue maturation was further demonstrated using hMSC which were successfully induced to adipocyte differentiation. For further standardization, a mobile electrical device for automated media exchange was developed, improving handling in the laboratory and thus reduces the probability of contamination. N2 - Additive Fertigungsverfahren wie der 3D-Druck boomen in der Industrie aufgrund ihres hohen Freiheitsgrads in Bezug auf geometrische Formen und verfügbare Materialien. Mit Blick auf die patientenspezifische Medizin hat sich der 3D-Druck auch in den Biowissenschaften bewährt, wo er die Formtreue für individualisierte Gewebe im Bereich des Bioprinting nutzt. Parallel dazu haben sich auch die derzeitigen Systeme der Bioreaktortechnologie an die neue Fertigungstechnologie angepasst, und es werden zunehmend 3D-gedruckte Bioreaktoren entwickelt. In dieser Arbeit werden erstmals die Herstellung des Gewebes und ein maßgeschneiderter Bioreaktor kombiniert, wodurch der Gesamtprozess erheblich gestrafft und beide Verfahren optimal zusammengeführt werden. Auf diese Weise kann die Herstellung der Gewebe individualisiert werden, indem der Reaktor an das Gewebe und die patientenspezifische Wundgeometrie angepasst wird. Aus diesem Grund wurde zunächst eine gemeinsame Basis und Leitlinie für den Geräte- und Materialübergreifenden Einsatz von 3D-Druckern geschaffen. Deren Anwendbarkeit wurde durch die iterative Entwicklung eines perfundierbaren Bioreaktorsystems aus Polydimethylsiloxan (PDMS) und einem Lignin-basierten Filament demonstriert, in das ein biologisches Gewebe mit flexibler Form gedruckt werden kann. Kostengünstige Biotintenalternativen und emph in silico Computational Fluid Dynamics Simulationen wurden für eine materialschonende Formentwicklung verwendet. Nährstoffverteilung und Scherspannung konnten auf diese Weise präexperimentell vorhergesagt werden. Als Beweis für die Funktionalität und Anpassbarkeit des Reaktors wurden Gewebe aus einer Cellink® Bioink auf Nanocellulosebasis sowie einer Tinte auf Alginatbasis, welche mit Me-PMeOx100-b-PnPrOzi100-EIP (POx) gemischt wurde (Alginat-POx-Bioink), erfolgreich zusammen mit C2C12-Zelllinie dynamisch im Reaktor kultiviert. Die Gewebereifung wurde außerdem mit hMSC demonstriert, die erfolgreich zur adipozyten Differenzierung induziert wurden. Zur weiteren Standardisierung wurde ein mobiles elektrisches Gerät für den automatischen Medienwechsel entwickelt, welches die Handhabung im Labor verbessert und damit die Wahrscheinlichkeit einer Kontamination deutlich verringert. KW - 3 D bioprinting KW - Tissue Engineering KW - Bioreactor Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280190 ER - TY - THES A1 - Malkmus, Christoph T1 - Establishment of a 3D \(in\) \(vitro\) skin culture system for the obligatory human parasite \(Onchocerca\) \(volvulus\) T1 - Etablierung eines 3D-\(in\)-\(vitro\)-Hautkultursystems für den obligat humanen Parasiten \(Onchocerca\) \(volvulus\) N2 - Onchocerciasis, the world's second-leading infectious cause of blindness in humans –prevalent in Sub-Saharan Africa – is caused by Onchocerca volvulus (O. volvulus), an obligatory human parasitic filarial worm. Commonly known as river blindness, onchocerciasis is being targeted for elimination through ivermectin-based mass drug administration programs. However, ivermectin does not kill adult parasites, which can live and reproduce for more than 15 years within the human host. These impediments heighten the need for a deeper understanding of parasite biology and parasite-human host interactions, coupled with research into the development of new tools – macrofilaricidal drugs, diagnostics, and vaccines. Humans are the only definitive host for O. volvulus. Hence, no small-animal models exist for propagating the full life cycle of O. volvulus, so the adult parasites must be obtained surgically from subcutaneous nodules. A two-dimensional (2D) culture system allows that O. volvulus larvae develop from the vector-derived infective stage larvae (L3) in vitro to the early pre-adult L5 stages. As problematic, the in vitro development of O. volvulus to adult worms has so far proved infeasible. We hypothesized that an increased biological complexity of a three-dimensional (3D) culture system will support the development of O. volvulus larvae in vitro. Thus, we aimed to translate crucial factors of the in vivo environment of the developing worms into a culture system based on human skin. The proposed tissue model should contain 1. skinspecific extracellular matrix, 2. skin-specific cells, and 3. enable a direct contact of larvae and tissue components. For the achievement, a novel adipose tissue model was developed and integrated to a multilayered skin tissue comprised of epidermis, dermis and subcutis. Challenges of the direct culture within a 3D tissue model hindered the application of the three-layered skin tissue. However, the indirect coculture of larvae and skin models supported the growth of fourth stage (L4) larvae in vitro. The direct culture of L4 and adipose tissue strongly improved the larvae survival. Furthermore, the results revealed important cues that might represent the initial encapsulation of the developing worm within nodular tissue. These results demonstrate that tissue engineered 3D tissues represent an appropriate in vitro environment for the maintenance and examination of O. volvulus larvae. N2 - Onchozerkose, die weltweit zweithäufigste infektionsbedingte Ursache für Erblindung von Menschen, wird durch Onchocerca volvulus (O. volvulus) verursacht, ein parasitärer Fadenwurm. Die allgemein als Flussblindheit bekannte Onchozerkose wird mit dem Medikament Ivermectin bekämpft, das jedoch nicht die adulten Parasiten tötet, die im Menschen mehr als 15 Jahre lang leben und sich vermehren. Ein tieferes Verständnis der Biologie des Parasiten und dessen Interaktionen im menschlichen Wirt ist für die Erforschung und Entwicklung neuer Instrumente – makrofilarizide Medikamente, Diagnostika und Impfstoffe – erforderlich. Da der Mensch der einzige Endwirt für O. volvulus ist, gibt es keine Tiermodelle für dessen Vermehrung. Zu Forschungszwecken werden adulte Würmer daher chirurgisch aus subkutanen Knoten erkrankter Individuen gewonnen. Ein zweidimensionales (2D) Kultursystem ermöglicht die Entwicklung von aus dem Vektor isolierten infektiösen O. volvulus-Larven (L3) bis zu einem frühen präadulten Stadium. Als problematisch erwies sich bisher die in vitro Entwicklung von O. volvulus bis zum adulten Wurm. Unsere Hypothese ist, dass eine erhöhte biologische Komplexität des Kultursystems die Entwicklung von O. volvulus-Larven in vitro unterstützt. Daher wurden entscheidende Faktoren der in vivo-Umgebung entwickelnder Larven – die menschliche Haut – auf ein dreidimensionales (3D) Kultursystem übertragen. Dieses Kultursystem sollte 1. Haut-spezifische extrazelluläre Matrix enthalten, 2. hautspezifische Zellen und 3. einen direkten Kontakt zwischen Larven und Gewebekomponenten ermöglichen. Dafür wurde ein neuartiges Fettgewebemodell entwickelt, das in ein mehrschichtiges Hautgewebe integriert wurde – bestehend aus Epidermis, Dermis und subkutanem Fettgewebe. Die Anwendung des dreischichtigen Hautgewebes als direktes Kultursystem wurde durch technische Herausforderungen verhindert. Jedoch unterstützte die indirekte Ko-Kultur von Hautmodellen das Wachstum der Larven (L4) in vitro. Die direkte Kultur mit dem Fettgewebemodell verbesserte die Viabilität der Larven signifikant. Darüber hinaus konnten Anzeichen für eine beginnende Verkapselung der Larven durch humane Zellen und Matrix gezeigt werden kann. Die Ergebnisse demonstrieren, dass humane Gewebemodelle eine angemessene in vitro-Umgebung für die Kultur und die Erforschung von O. volvulus darstellen. KW - Tissue Engineering KW - Humanparasitologie KW - In-vitro-Kultur KW - Onchozerkose KW - Multilayered skin tissue model KW - Onchocerca volvulus KW - Skin Tissue Engineering KW - Parasitology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317171 ER -