TY - JOUR A1 - Reiners, Philipp A1 - Sobrino, José A1 - Kuenzer, Claudia T1 - Satellite-derived land surface temperature dynamics in the context of global change — a review JF - Remote Sensing N2 - Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites. KW - remote sensing KW - land surface temperature KW - temperature KW - dynamics KW - global change KW - climate change KW - global warming KW - earth observation KW - review Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311120 SN - 2072-4292 VL - 15 IS - 7 ER - TY - JOUR A1 - Sogno, Patrick A1 - Klein, Igor A1 - Kuenzer, Claudia T1 - Remote sensing of surface water dynamics in the context of global change — a review JF - Remote Sensing N2 - Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution. KW - remote sensing KW - surface water KW - dynamics KW - global change KW - earth observation KW - hydrology KW - biosphere KW - anthroposphere KW - review Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275274 SN - 2072-4292 VL - 14 IS - 10 ER - TY - JOUR A1 - Sogno, Patrick A1 - Traidl-Hoffmann, Claudia A1 - Kuenzer, Claudia T1 - Earth Observation data supporting non-communicable disease research: a review JF - Remote Sensing N2 - A disease is non-communicable when it is not transferred from one person to another. Typical examples include all types of cancer, diabetes, stroke, or allergies, as well as mental diseases. Non-communicable diseases have at least two things in common — environmental impact and chronicity. These diseases are often associated with reduced quality of life, a higher rate of premature deaths, and negative impacts on a countries' economy due to healthcare costs and missing work force. Additionally, they affect the individual's immune system, which increases susceptibility toward communicable diseases, such as the flu or other viral and bacterial infections. Thus, mitigating the effects of non-communicable diseases is one of the most pressing issues of modern medicine, healthcare, and governments in general. Apart from the predisposition toward such diseases (the genome), their occurrence is associated with environmental parameters that people are exposed to (the exposome). Exposure to stressors such as bad air or water quality, noise, extreme heat, or an overall unnatural surrounding all impact the susceptibility to non-communicable diseases. In the identification of such environmental parameters, geoinformation products derived from Earth Observation data acquired by satellites play an increasingly important role. In this paper, we present a review on the joint use of Earth Observation data and public health data for research on non-communicable diseases. We analyzed 146 articles from peer-reviewed journals (Impact Factor ≥ 2) from all over the world that included Earth Observation data and public health data for their assessments. Our results show that this field of synergistic geohealth analyses is still relatively young, with most studies published within the last five years and within national boundaries. While the contribution of Earth Observation, and especially remote sensing-derived geoinformation products on land surface dynamics is on the rise, there is still a huge potential for transdisciplinary integration into studies. We see the necessity for future research and advocate for the increased incorporation of thematically profound remote sensing products with high spatial and temporal resolution into the mapping of exposomes and thus the vulnerability and resilience assessment of a population regarding non-communicable diseases. KW - Earth Observation KW - land surface dynamics KW - atmosphere KW - exposure KW - geoanalysis KW - non-communicable disease KW - public health KW - remote sensing KW - review Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211113 SN - 2072-4292 VL - 12 IS - 16 ER - TY - JOUR A1 - Holzwarth, Stefanie A1 - Thonfeld, Frank A1 - Abdullahi, Sahra A1 - Asam, Sarah A1 - Da Ponte Canova, Emmanuel A1 - Gessner, Ursula A1 - Huth, Juliane A1 - Kraus, Tanja A1 - Leutner, Benjamin A1 - Kuenzer, Claudia T1 - Earth Observation based monitoring of forests in Germany: a review JF - Remote Sensing N2 - Forests in Germany cover around 11.4 million hectares and, thus, a share of 32% of Germany's surface area. Therefore, forests shape the character of the country's cultural landscape. Germany's forests fulfil a variety of functions for nature and society, and also play an important role in the context of climate levelling. Climate change, manifested via rising temperatures and current weather extremes, has a negative impact on the health and development of forests. Within the last five years, severe storms, extreme drought, and heat waves, and the subsequent mass reproduction of bark beetles have all seriously affected Germany’s forests. Facing the current dramatic extent of forest damage and the emerging long-term consequences, the effort to preserve forests in Germany, along with their diversity and productivity, is an indispensable task for the government. Several German ministries have and plan to initiate measures supporting forest health. Quantitative data is one means for sound decision-making to ensure the monitoring of the forest and to improve the monitoring of forest damage. In addition to existing forest monitoring systems, such as the federal forest inventory, the national crown condition survey, and the national forest soil inventory, systematic surveys of forest condition and vulnerability at the national scale can be expanded with the help of a satellite-based earth observation. In this review, we analysed and categorized all research studies published in the last 20 years that focus on the remote sensing of forests in Germany. For this study, 166 citation indexed research publications have been thoroughly analysed with respect to publication frequency, location of studies undertaken, spatial and temporal scale, coverage of the studies, satellite sensors employed, thematic foci of the studies, and overall outcomes, allowing us to identify major research and geoinformation product gaps. KW - remote sensing KW - earth observation KW - forest KW - forest monitoring KW - forest disturbances KW - Germany KW - review Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216334 SN - 2072-4292 VL - 12 IS - 21 ER - TY - JOUR A1 - Weigand, Matthias A1 - Wurm, Michael A1 - Dech, Stefan A1 - Taubenböck, Hannes T1 - Remote sensing in environmental justice research—a review JF - ISPRS International Journal of Geo-Information N2 - Human health is known to be affected by the physical environment. Various environmental influences have been identified to benefit or challenge people's physical condition. Their heterogeneous distribution in space results in unequal burdens depending on the place of living. In addition, since societal groups tend to also show patterns of segregation, this leads to unequal exposures depending on social status. In this context, environmental justice research examines how certain social groups are more affected by such exposures. Yet, analyses of this per se spatial phenomenon are oftentimes criticized for using “essentially aspatial” data or methods which neglect local spatial patterns by aggregating environmental conditions over large areas. Recent technological and methodological developments in satellite remote sensing have proven to provide highly detailed information on environmental conditions. This narrative review therefore discusses known influences of the urban environment on human health and presents spatial data and applications for analyzing these influences. Furthermore, it is discussed how geographic data are used in general and in the interdisciplinary research field of environmental justice in particular. These considerations include the modifiable areal unit problem and ecological fallacy. In this review we argue that modern earth observation data can represent an important data source for research on environmental justice and health. Especially due to their high level of spatial detail and the provided large-area coverage, they allow for spatially continuous description of environmental characteristics. As a future perspective, ongoing earth observation missions, as well as processing architectures, ensure data availability and applicability of ’big earth data’ for future environmental justice analyses. KW - satellite remote sensing KW - review KW - environmental justice KW - big earth data KW - urban environments Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196950 SN - 2220-9964 VL - 8 IS - 1 ER -