TY - JOUR A1 - Ehrenfeld, Stephan A1 - Herbort, Oliver A1 - Butz, Martin V. T1 - Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference JF - Frontiers in Computational Neuroscience N2 - This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. KW - information KW - posterior parietal cortex KW - hand KW - population code KW - conflicting information KW - multimodal interaction KW - probabilistic inference KW - modular body schema KW - sensor fusion KW - multisensory perception KW - fusion KW - representation KW - multisensory processing KW - see KW - implementation KW - perspective KW - multisensory integration KW - population codes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122253 VL - 7 IS - 148 ER - TY - THES A1 - Herbort, Oliver T1 - Encoding Redundancy for Task-dependent Optimal Control : A Neural Network Model of Human Reaching T1 - Redundante Repräsentationen als Grundlage aufgabenbezogener optimaler Steuerung:Ein neuronales Netzwerk Modell menschlicher Zeigebewegungen N2 - The human motor system is adaptive in two senses. It adapts to the properties of the body to enable effective control. It also adapts to different situational requirements and constraints. This thesis proposes a new neural network model of both kinds of adaptivity for the motor cortical control of human reaching movements, called SURE_REACH (sensorimotor unsupervised learning redundancy resolving control architecture). In this neural network approach, the kinematic and sensorimotor redundancy of a three-joint planar arm is encoded in task-independent internal models by an unsupervised learning scheme. Before a movement is executed, the neural networks prepare a movement plan from the task-independent internal models, which flexibly incorporates external, task-specific constraints. The movement plan is then implemented by proprioceptive or visual closed-loop control. This structure enables SURE_REACH to reach hand targets while incorporating task-specific contraints, for example adhering to kinematic constraints, anticipating the demands of subsequent movements, avoiding obstacles, or reducing the motion of impaired joints. Besides this functionality, the model accounts for temporal aspects of human reaching movements or for data from priming experiments. Additionally, the neural network structure reflects properties of motor cortical networks like interdependent population encoded body space representations, recurrent connectivity, or associative learning schemes. This thesis introduces and describes the new model, relates it to current computational models, evaluates its functionality, relates it to human behavior and neurophysiology, and finally discusses potential extensions as well as the validity of the model. In conclusion, the proposed model grounds highly flexible task-dependent behavior in a neural network framework and unsupervised sensorimotor learning. N2 - Das motorische System des Menschen ist in zweierlei Hinsicht anpassungsfähig. Es passt sich den Eigenschaften des Körpers an, um diesen effektiv zu kontrollieren. Es passt sich aber auch unterschiedlichen situationsabhängigen Erfordernissen und Beschränkungen an. Diese Dissertation stellt ein neues neuronales Netzwerk Modell der motor-kortikalen Steuerung von menschlichen Zeigebewegungen vor, das beide Arten von Anpassungsfähigkeit integriert (SURE_REACH, Sensumotorische, unüberwacht lernende, redundanzauflösende Kontrollarchitektur). Das neuronale Netzwerk speichert kinematische und sensumotorische Redundanz eines planaren, dreigelenkigen Armes in aufgabenunabhängigen internen Modellen mittels unüberwachter Lernverfahrenen. Vor der Ausführung einer Bewegung bereitet das neuronale Netzwerk einen Bewegungsplan vor. Dieser basiert auf den aufgabenunabhängigen internen Modells und passt sich flexibel äu"seren, aufgabenabhängigen Erfordernissen an. Der Bewegungsplan wird dann durch propriozeptive oder visuelle Regelung umgesetzt. Auf diese Weise erklärt SURE_REACH Bewegungen zu Handzielen die aufgabenabhängige Erfordernisse berücksichtigen, zum Beispiel werden kinematische Beschränkungen miteinbezogen, Erfordernisse nachfolgender Aufgaben antizipiert, Hindernisse vermieden oder Bewegungen verletzter Gelenke reduziert. Desweiteren werden zeitliche Eigenschaften menschlicher Bewegungen oder die Ergebnisse von Primingexperimenten erklärt. Die neuronalen Netzwerke bilden zudem Eigenschaften motor-kortikaler Netzwerke ab, zum Beispiel wechselseitig abhängige Raumrepräsentationen, rekurrente Verbindungen oder assoziative Lernverfahren. Diese Dissertation beschreibt das neue Modell, vergleicht es mit anderen Modellen, untersucht seine Funktionalität, stellt Verbindungen zu menschlichem Verhalten und menschlicher Neurophysiologie her und erörtert schlie"slich mögliche Erweiterungen und die Validität des Models. Zusammenfassend stellt das vorgeschlagene Model eine Erklärung für flexibles aufgabenbezogenes Verhalten auf ein Fundament aus neuronalen Netzwerken und unüberwachten sensumotorischen Lernen. KW - Bewegungssteuerung KW - Motorisches Lernen KW - Redundanz KW - Neuronales Netz KW - Optimale Kontrolle KW - Computersimulation KW - Populationscodes KW - dynamisches Programmieren KW - flexibles Verhalten KW - population codes KW - dynamic programming KW - flexible behavior Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26032 ER -