TY - JOUR A1 - Gierlich, Philipp A1 - Lex, Veronika A1 - Technau, Antje A1 - Keupp, Anne A1 - Morper, Lorenz A1 - Glunz, Amelie A1 - Sennholz, Hanno A1 - Rachor, Johannes A1 - Sauer, Sascha A1 - Marcu, Ana A1 - Grigoleit, Götz Ulrich A1 - Wölfl, Matthias A1 - Schlegel, Paul G. A1 - Eyrich, Matthias T1 - Prostaglandin E\(_2\) in a TLR3‑ and 7/8‑agonist‑based DC maturation cocktail generates mature, cytokine‑producing, migratory DCs but impairs antigen cross‑presentation to CD8\(^+\) T cells JF - Cancer Immunology, Immunotherapy N2 - Mature dendritic cells (DCs) represent cellular adjuvants for optimal antigen presentation in cancer vaccines. Recently, a combination of prostaglandin E\(_2\) (PGE\(_2\)) with Toll-like receptor agonists (TLR-P) was proposed as a new standard to generate superior cytokine-producing DCs with high migratory capacity. Here, we compare TLR-P DCs with conventional DCs matured only with the proinflammatory cytokines TNFα and IL-1ß (CDCs), focussing on the interaction of resulting DCs with CD8\(^+\) T-cells. TLR-P matured DCs showed elevated expression of activation markers such as CD80 and CD83 compared to CDCs, together with a significantly higher migration capacity. Secretion of IL-6, IL-8, IL-10, and IL-12 was highest after 16 h in TLR-P DCs, and only TLR-P DCs secreted active IL-12p70. TLR-P DCs as well as CDCs successfully primed multifunctional CD8\(^+\) T-cells from naïve precursors specific for the peptide antigens Melan-A, NLGN4X, and PTP with comparable priming efficacy and T-cell receptor avidity. CD8\(^+\) T-cells primed by TLR-P DCs showed significantly elevated expression of the integrin VLA-4 and a trend for higher T-cell numbers after expansion. In contrast, TLR-P DCs displayed a substantially reduced capability to cross-present CMVpp65 protein antigen to pp65-specific T cells, an effect that was dose-dependent on PGE2 during DC maturation and reproducible with several responder T-cell lines. In conclu-sion, TLR-P matured DCs might be optimal presenters of antigens not requiring processing such as short peptides. However, PGE\(_2\) seems less favorable for maturation of DCs intended to process and cross-present more complex vaccine antigens such as lysates, proteins or long peptides. KW - dendritic cells KW - cancer vaccines KW - prostaglandin E2 KW - TLR agonists KW - tumor-specific CD8+ T cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232311 SN - 0340-7004 VL - 69 ER - TY - JOUR A1 - Frank, Benjamin A1 - Marcu, Ana A1 - de Oliveira Almeida Petersen, Antonio Luis A1 - Weber, Heike A1 - Stigloher, Christian A1 - Mottram, Jeremy C. A1 - Scholz, Claus Jürgen A1 - Schurigt, Uta T1 - Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210 JF - Parasites & Vectors N2 - Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients. KW - autophagy KW - BNIP3 KW - CTSE KW - electron tomography KW - leishmania major KW - macrophages KW - miRNAs KW - MTOR KW - siRNAs KW - transmission electron microscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124997 VL - 8 IS - 404 ER -