TY - JOUR A1 - Götz, Lisa A1 - Rueckschloss, Uwe A1 - Balk, Gözde A1 - Pfeiffer, Verena A1 - Ergün, Süleyman A1 - Kleefeldt, Florian T1 - The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer JF - Frontiers in Immunology N2 - The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology. KW - CEACAM1 KW - CEA KW - cancer KW - tumor KW - malignancy KW - metastasis KW - signaling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357250 VL - 14 ER - TY - JOUR A1 - Kleefeldt, Florian A1 - Bömmel, Heike A1 - Broede, Britta A1 - Thomsen, Michael A1 - Pfeiffer, Verena A1 - Wörsdörfer, Philipp A1 - Karnati, Srikanth A1 - Wagner, Nicole A1 - Rueckschloss, Uwe A1 - Ergün, Süleyman T1 - Aging‐related carcinoembryonic antigen‐related cell adhesion molecule 1 signaling promotes vascular dysfunction JF - Aging Cell N2 - Aging is an independent risk factor for cardiovascular diseases and therefore of particular interest for the prevention of cardiovascular events. However, the mechanisms underlying vascular aging are not well understood. Since carcinoembryonic antigen‐related cell adhesion molecule 1 (CEACAM1) is crucially involved in vascular homeostasis, we sought to identify the role of CEACAM1 in vascular aging. Using human internal thoracic artery and murine aorta, we show that CEACAM1 is upregulated in the course of vascular aging. Further analyses demonstrated that TNF‐α is CEACAM1‐dependently upregulated in the aging vasculature. Vice versa, TNF‐α induces CEACAM1 expression. This results in a feed‐forward loop in the aging vasculature that maintains a chronic pro‐inflammatory milieu. Furthermore, we demonstrate that age‐associated vascular alterations, that is, increased oxidative stress and vascular fibrosis, due to increased medial collagen deposition crucially depend on the presence of CEACAM1. Additionally, age‐dependent upregulation of vascular CEACAM1 expression contributes to endothelial barrier impairment, putatively via increased VEGF/VEGFR‐2 signaling. Consequently, aging‐related upregulation of vascular CEACAM1 expression results in endothelial dysfunction that may promote atherosclerotic plaque formation in the presence of additional risk factors. Our data suggest that CEACAM1 might represent an attractive target in order to delay physiological aging and therefore the transition to vascular disorders such as atherosclerosis. KW - aging KW - anti‐aging KW - cytokines KW - inflammation KW - mouse KW - reactive oxygen species Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201231 VL - 2019 IS - 18 ER - TY - JOUR A1 - Bandyra, Katarzyna J. A1 - Said, Nelly A1 - Pfeiffer, Verena A1 - Górna, Maria W. A1 - Vogel, Jörg A1 - Luisi, Ben F. T1 - The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E JF - Molecular Cell N2 - Numerous small non-coding RNAs (sRNAs) in bacteria modulate rates of translation initiation and degradation of target mRNAs, which they recognize through base-pairing facilitated by the RNA chaperone Hfq. Recent evidence indicates that the ternary complex of Hfq, sRNA and mRNA guides endoribonuclease RNase E to initiate turnover of both the RNAs. We show that a sRNA not only guides RNase E to a defined site in a target RNA, but also allosterically activates the enzyme by presenting a monophosphate group at the 5′-end of the cognate-pairing “seed.” Moreover, in the absence of the target the 5′-monophosphate makes the sRNA seed region vulnerable to an attack by RNase E against which Hfq confers no protection. These results suggest that the chemical signature and pairing status of the sRNA seed region may help to both ‘proofread’ recognition and activate mRNA cleavage, as part of a dynamic process involving cooperation of RNA, Hfq and RNase E. KW - medicine Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126202 VL - 47 IS - 6 ER - TY - JOUR A1 - Pfeiffer, Verena A1 - Götz, Rudolf A1 - Xiang, Chaomei A1 - Camarero, Guadelupe A1 - Braun, Attila A1 - Zhang, Yina A1 - Blum, Robert A1 - Heinsen, Helmut A1 - Nieswandt, Bernhard A1 - Rapp, Ulf R. T1 - Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum JF - PLoS ONE N2 - This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures. KW - granule cells KW - hippocampus KW - neurons KW - neuronal dendrites KW - embryos KW - dentate gyrus KW - neuronal differentiation KW - cerebellum Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130304 VL - 8 IS - 3 ER -