TY - JOUR A1 - Gromer, Daniel A1 - Kiser, Dominik P. A1 - Pauli, Paul T1 - Thigmotaxis in a virtual human open field test JF - Scientific Reports N2 - Animal models are used to study neurobiological mechanisms in mental disorders. Although there has been significant progress in the understanding of neurobiological underpinnings of threat-related behaviors and anxiety, little progress was made with regard to new or improved treatments for mental disorders. A possible reason for this lack of success is the unknown predictive and cross-species translational validity of animal models used in preclinical studies. Re-translational approaches, therefore, seek to establish cross-species translational validity by identifying behavioral operations shared across species. To this end, we implemented a human open field test in virtual reality and measured behavioral indices derived from animal studies in three experiments (N=31, N=30, and N=80). In addition, we investigated the associations between anxious traits and such behaviors. Results indicated a strong similarity in behavior across species, i.e., participants in our study-like rodents in animal studies-preferred to stay in the outer region of the open field, as indexed by multiple behavioral parameters. However, correlational analyses did not clearly indicate that these behaviors were a function of anxious traits of participants. We conclude that the realized virtual open field test is able to elicit thigmotaxis and thus demonstrates cross-species validity of this aspect of the test. Modulatory effects of anxiety on human open field behavior should be examined further by incorporating possible threats in the virtual scenario and/or by examining participants with higher anxiety levels or anxiety disorder patients. KW - anxiety KW - human behavior KW - anciety-like behavior KW - approach-avoidance conflict KW - elevated plus-maze KW - spatial navigation KW - mental disorders KW - fear KW - threat KW - circuits KW - reality KW - metaanalysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259850 VL - 11 ER - TY - JOUR A1 - Bahník, Štěpán A1 - Stuchlík, Aleš T1 - Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats JF - PeerJ N2 - The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidancemust be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark. KW - navigation KW - interval timing KW - rats KW - morris water maze KW - hippocampal-neurons KW - D2 receptors KW - animal model KW - acute MK-801 KW - memory KW - behavior KW - dissociation KW - flexibility KW - spatial navigation KW - substratal idiothetic navigation KW - inertial idiothetic navigation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141931 VL - 3 IS - e1257 ER -