TY - JOUR A1 - Drehmann, Paul A1 - Milanos, Sinem A1 - Schaefer, Natascha A1 - Kasaragod, Vikram Babu A1 - Herterich, Sarah A1 - Holzbach-Eberle, Ulrike A1 - Harvey, Robert J. A1 - Villmann, Carmen T1 - Dual role of dysfunctional Asc-1 transporter in distinct human pathologies, human startle disease, and developmental delay JF - eNeuro N2 - Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5. Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5′ and 3′ untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1\(^{G307R}\) from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1\(^{G307R}\) did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay. KW - Asc-1 transporter KW - candidate gene KW - glycine receptor KW - glycine uptake KW - human startle disease KW - NMDAR Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349947 VL - 10 IS - 11 ER - TY - JOUR A1 - Erhardt, A. A1 - Akula, N. A1 - Schumacher, J. A1 - Czamara, D. A1 - Karbalai, N. A1 - Müller-Myhsok, B. A1 - Mors, O. A1 - Borglum, A. A1 - Kristensen, A. S. A1 - Woldbye, D. P. D. A1 - Koefoed, P. A1 - Eriksson, E. A1 - Maron, E. A1 - Metspalu, A. A1 - Nurnberger, J. A1 - Philibert, R. A. A1 - Kennedy, J. A1 - Domschke, K. A1 - Reif, A. A1 - Deckert, J. A1 - Otowa, T. A1 - Kawamura, Y. A1 - Kaiya, H. A1 - Okazaki, Y. A1 - Tanii, H. A1 - Tokunaga, K. A1 - Sasaki, T. A1 - Ioannidis, J. P. A. A1 - McMahon, F. J. A1 - Binder, E. B. T1 - Replication and meta-analysis of TMEM132D gene variants in panic disorder JF - Translational Psychiatry N2 - A recent genome-wide association study in patients with panic disorder (PD) identified a risk haplotype consisting of two single-nucleotide polymorphisms (SNPs) (rs7309727 and rs11060369) located in intron 3 of TMEM132D to be associated with PD in three independent samples. Now we report a subsequent confirmation study using five additional PD case-control samples (n = 1670 cases and n 2266 controls) assembled as part of the Panic Disorder International Consortium (PanIC) study for a total of 2678 cases and 3262 controls in the analysis. In the new independent samples of European ancestry (EA), the association of rs7309727 and the risk haplotype rs7309727-rs11060369 was, indeed, replicated, with the strongest signal coming from patients with primary PD, that is, patients without major psychiatric comorbidities (n 1038 cases and n 2411 controls). This finding was paralleled by the results of the meta-analysis across all samples, in which the risk haplotype and rs7309727 reached P-levels of P = 1.4e-8 and P = 1.1e-8, respectively, when restricting the samples to individuals of EA with primary PD. In the Japanese sample no associations with PD could be found. The present results support the initial finding that TMEM132D gene contributes to genetic susceptibility for PD in individuals of EA. Our results also indicate that patient ascertainment and genetic background could be important sources of heterogeneity modifying this association signal in different populations. KW - candidate gene KW - genome-wide association KW - Japanese population Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133324 VL - 2 IS - e156 ER -