TY - INPR A1 - Scheitl, Carolin P. M. A1 - Mieczkowski, Mateusz A1 - Schindelin, Hermann A1 - Höbartner, Claudia T1 - Structure and mechanism of the methyltransferase ribozyme MTR1 T2 - Nature Chemical Biology N2 - RNA-catalysed RNA methylation was recently shown to be part of the catalytic repertoire of ribozymes. The methyltransferase ribozyme MTR1 catalyses the site-specific synthesis of 1-methyladenosine (m\(^1\)A) in RNA, using O\(^6\)-methylguanine (m\(^6\)G) as methyl group donor. Here we report the crystal structure of MTR1 at a resolution of 2.8 Å, which reveals a guanine binding site reminiscent of natural guanine riboswitches. The structure represents the postcatalytic state of a split ribozyme in complex with the m1A-containing RNA product and the demethylated cofactor guanine. The structural data suggest the mechanistic involvement of a protonated cytidine in the methyl transfer reaction. A synergistic effect of two 2'-O-methylated ribose residues in the active site results in accelerated methyl group transfer. Supported by these results, it seems plausible that modified nucleotides may have enhanced early RNA catalysis and that metabolite-binding riboswitches may resemble inactivated ribozymes that have lost their catalytic activity during evolution. KW - Methyltransferase Ribozyme MTR1 KW - Crystal structure of MTR1 KW - RNA-catalyzed RNA methylation KW - X-ray crystallography KW - RNA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-272170 ET - submitted version ER - TY - JOUR A1 - Scheitl, Carolin P. M. A1 - Lange, Sandra A1 - Höbartner, Claudia T1 - New deoxyribozymes for the native ligation of RNA JF - Molecules N2 - Deoxyribozymes (DNAzymes) are small, synthetic, single-stranded DNAs capable of catalysing chemical reactions, including RNA ligation. Herein, we report a novel class of RNA ligase deoxyribozymes that utilize 5’-adenylated RNA (5’-AppRNA) as the donor substrate, mimicking the activated intermediates of protein-catalyzed RNA ligation. Four new DNAzymes were identified by in vitro selection from an N40 random DNA library and were shown to catalyze the intermolecular linear RNA-RNA ligation via the formation of a native 3’-5’-phosphodiester linkage. The catalytic activity is distinct from previously described RNA-ligating deoxyribozymes. Kinetic analyses revealed the optimal incubation conditions for high ligation yields and demonstrated a broad RNA substrate scope. Together with the smooth synthetic accessibility of 5’-adenylated RNAs, the new DNA enzymes are promising tools for the protein-free synthesis of long RNAs, for example containing precious modified nucleotides or fluorescent labels for biochemical and biophysical investigations. KW - RNA ligation KW - DNA catalysis KW - in vitro selection KW - Deoxyribozyme Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210405 VL - 25 IS - 16 ER - TY - INPR A1 - Maghami, Mohammad Ghaem A1 - Scheitl, Carolin P. M. A1 - Höbartner, Claudia T1 - Direct in vitro selection of trans-acting ribozymes for posttranscriptional, site-specific, and covalent fluorescent labeling of RNA T2 - Journal of the American Chemical Society N2 - General and efficient tools for site-specific fluorescent or bioorthogonal labeling of RNA are in high demand. Here, we report direct in vitro selection, characterization, and application of versatile trans-acting 2'-5' adenylyl transferase ribozymes for covalent and site-specific RNA labeling. The design of our partially structured RNA pool allowed for in vitro evolution of ribozymes that modify a predetermined nucleotide in cis (i.e. intramolecular reaction), and were then easily engineered for applications in trans (i.e. in an intermolecular setup). The resulting ribozymes are readily designed for specific target sites in small and large RNAs and accept a wide variety of N6-modified ATP analogues as small molecule substrates. The most efficient new ribozyme (FH14) shows excellent specificity towards its target sequence also in the context of total cellular RNA. KW - covalent and site-specific RNA labeling KW - trans-acting 2'-5' adenylyl transferase ribozymes KW - in vitro selection from a structured RNA library KW - Ribozyme-catalyzed RNA labeling KW - intermolecular applications of ribozymes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192333 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.9b10531. ER -