TY - THES A1 - Terveer, Nils T1 - Springs and Parachutes - Development and Characterization of Novel Formulations for Poorly Water-Soluble Drugs T1 - Sprungfedern und Fallschirme - Entwicklung und Charakterisierung neuer Formulierungen für schlecht wasserlösliche Wirkstoffe N2 - Successful formulation development of novel, particularly organic APIs of low molecular weight as candidates for ground-breaking pharmaceutical products is a major challenge for the pharmaceutical industry because of the poor aqueous solubility of most of these compounds. The hit identification strategies of drug development in use today apply high throughput screening techniques for the investigation of thousands of substances. This approach led to a systematical increase in molecular weight and lipophilicity and a decrease of water solubility of lead compounds reaching market access. The high lipophilicity causes an excellent permeability of the compounds which favours the absorption process from the small intestine, but it causes a decrease of water-solubility. It becomes evident that an adequate aqueous solubility is necessary for absorption of the API from the gastrointestinal fluids into the systemic circulation and hence for efficacy of the pharmaceutical product. Only an dissolved API is getting absorbed and becomes efficacious. The precipitated proportion is resigned directly. Therefore, the development of an individual formulation aligning the physicochemical characteristics is necessary for every API to produce supersaturated solutions in the small intestine and to reach an adequate bioavailability after absorption into the systemic circulation. In this thesis a specific formulation development was investigated for two exemplary poorly water-soluble APIs to replace the empirical approach often used today. The basic tyrosine-kinase inhibitor imatinib and six different acetylated amino acids were transferred into ILs. As compared to the free base and the mesylate salt, which is marketed by Novartis AG as Gleevec®, the dissolution rate as well as the supersaturation time was increased significantly. By changing the mesylate anion with its potential genotoxic risks, the total toxicity of the drug product could be decreased. The amorphous ILs proved adequate stability under forcing conditions and there was no recrystallization of the free base observed. The amorphous character of the ILs caused an increased amount of water vapour sorption which can be compensated by special packaging materials. Taken together, the presentation of imatinib as an IL is intended for oral administration as a tablet and can cause a reduction of dose because of the increased solubility. Therefore, the occurrence of side effects can be reduced as compared to Gleevec®. If there is actually an increased bioavailability to observe, has to be proved by the execution of animal trials. The novel NOX inhibitor VAS3947 is intended for the treatment of endothelial dysfunctions causing diseases like heart failure and stroke. The compounds poor aqueous solubility hindered further clinical development so far and make the drug candidate to remain in a very early stage of the drug development process. Therefore, different formulation concepts were evaluated in this study: An amorphous solid dispersion prepared from VAS3947 and Eudragit® L100 by means of spray drying was able to increase the dissolution rate and solubility of the compound significantly, but with the accomplished kinetic solubility being in the low µM range it is not possible to reach therapeutic plasma concentrations. In contrast, the incorporation into cyclodextrins resulted in an 760-fold increased solubility. Different cyclodextrins were evaluated. Especially the lipophilic derivatives of the β-cyclodextrin showed to be the most adequate excipients. The incorporation of the API into the cyclodextrin cavity was proved by means of NMR spectroscopy. Additionally, a formulation of VAS3947 and hydroxypropyl-β-cyclodextrin was prepared. This formulation is intended for the intravenous application during animal trials, which have to be conducted to get to know the pharmacokinetics of VAS3947. This formulation reached a concentration of 1 mg/mL spending striking protection of VAS3947 against degradation. Presentation of VAS3947 as a microemulsion system led also to increase the aqueous solubility of the compound, but not in the same extent as the cyclodextrin formulation. Beside the formulation development a physicochemical characterization was performed to get to know important parameters such as log P and pKa values of VAS3947. An HPLC method was developed and validated to analyse the extent of solubility improvement. A major issue of the compound VAS3947 and all related triazolopyrimidine derivatives, developed by Vasopharm GmbH, is the insufficient chemical stability because of presence of a hemiaminal moiety in the chemical structure. Stability investigations and an extensive biopharmaceutical characterization confirm the hindering of further clinical development by insufficient drug stability and high cytotoxicity. Poor aqueous solubility is an additional disadvantage which can be handled by a concerted formulation development. N2 - Die erfolgreiche Formulierung von neuen, insbesondere organischen Wirkstoffen geringen Molekulargewichtes als Entwicklungskandidaten für innovative Arzneimittel stellt eine erhebliche Herausforderung für die pharmazeutische Industrie dar, weil ein Großteil dieser Substanzen ausgesprochen schlecht wasserlöslich ist. Die moderne Wirkstoffentwicklung basiert meistens auf der Zielstruktur und erfolgt unter Anwendung von Hochdurchsatzmethoden, bei denen Tausende an verschiedenen Substanzen getestet werden. Dieses Vorgehen hat in den letzten Jahrzehnten dazu geführt, dass die molare Masse und die Lipohilie derjenigen Entwicklungskandidaten, die eine Zulassung als Arzneimittel erreicht haben, kontinuierlich zugenommen haben. Durch die hohe Lipophilie weisen diese Wirkstoffe eine ausgezeichnete Permeabilität auf, die für den Absorptionsprozess aus dem Magen-Darm-Trakt notwendig ist. Jedoch geht damit gleichzeitig eine Abnahme der Wasserlöslichkeit einher. Es ist offensichtlich, dass eine ausreichendende hohe Wasserlöslichkeit die Grundvoraussetzung für die Absorption des Wirkstoffes aus dem Gastrointestinaltrakt in den systemischen Kreislauf und damit für die Wirksamkeit des Arzneimittels darstellt. Nur in Lösung befindlicher Wirkstoff kann absorbiert werden und seine Wirkung erzielen. Der ungelöste Anteil wird unverändert wieder ausgeschieden. Aus diesem Grunde ist die Entwicklung einer individuellen, an die physiko-chemischen Eigenschaften angepassten Formulierung für jeden Wirkstoff unbedingt erforderlich, um im Magen-Darm-Trakt übersättigte Lösungen zu generieren und dadurch eine ausreichende Bioverfügbarkeit zu erzielen. In dieser Arbeit wurden exemplarisch zwei schlecht lösliche Wirkstoffe ausgesucht und einer gezielten Formulierungsentwicklung unterzogen, um die bisher oft angewandte rein empirische Vorgehensweise abzulösen. Aus dem basischen Tyrosinkinase-Inhibitor Imatinib und unterschiedlichen acetylierten Aminosäuren wurden 6 verschiedene ionische Flüssigkeiten hergestellt. Im Vergleich mit der freien Base und dem Mesilat-Salz, welches die Firma Novartis AG unter dem Namen Gleevec® im Handel hat, wurden sowohl die Auflösungsrate als auch die zeitliche Dauer der Übersättigung signifikant vergrößert. Durch den Austausch des potentiell genotoxischen Mesilat-Anions gegen die acetylierten Aminosäuren konnte zusätzlich das Toxizitätsrisiko gesenkt werden. Die amorphen Formulierungen der ionische Flüssigkeiten waren unter Stressbedingungen ausreichend stabil und zeigten kein erhöhtes Risiko für eine Rekristallisation der freien Base. Die durch den amorphen Charakter gesteigerte Hygroskopizität lässt sich durch den Einsatz entsprechender Packmittel kompensieren. Generell eignet sich die Formulierung von Imatinib als ionische Flüssigkeit für die orale Applikation als Tablette und kann durch die Verbesserung der Wasserlöslichkeit zu einer Dosisreduktion beitragen, sodass weniger Nebenwirkungen auftreten als bei dem im Handel befindlichen Mesilat-Salz. Ob tatsächlich eine Verbesserung der Bioverfügbarkeit eintritt, muss noch durch Experimente im Tiermodell bestätigt werden. Der neuartige NOX-Inhibitor VAS3947 ist zur Behandlung von arteriosklerotischen Veränderungen im Gefäßendothel und damit allen verbunden Folgeerkrankungen wie zum Beispiel Herzinfarkt oder Schlaganfall von der Vasopharm GmbH entwickelt worden. Die extrem schlechte Wasserlöslichkeit hat bisher die klinische Forschung verhindert und der Wirkstoff befindet sich nach wie vor in einer sehr frühen Phase der Entwicklung. Aus diesem Grund wurden im Zuge dieser Arbeit verschiedene Formulierungskonzepte erforscht: Eine erste sprühgetrocknete, amorphe Formulierung mit dem Polymer Eudragit® L100 konnte zwar die Auflösungsrate und die Löslichkeit signifikant verbessern, allerdings kam es schnell zur Rekristallisation des Wirkstoffes und mit der erzielten kinetischen Löslichkeit im niedrigen µM Bereich ließen sich keine therapeutischen Plasmaspiegel erreichen. Durch die Herstellung einer Cyclodextrineinschlussverbindung von VAS3947 hingegen konnte die Löslichkeit um den Faktor 760 gesteigert werden. Verschiedene Cyclodextrine wurden getestet. Dabei erwiesen sich insbesondere die lipophilen Derivate des β-Cyclodextrins als geeignet. Die Einlagerung des Wirkstoffes in das Innere der Kavität wurde mittels NMR-Spektroskopie bestätigt. Zusätzlich wurde erstmals eine Formulierung von VAS3947 mit Hydroxypropyl-β-Cyclodextrin zur intravenösen Anwendung im Tiermodell für die Durchführung von geplanten Pharmakokinetikstudien hergestellt. Diese erzielte über 24 Stunden eine Löslichkeit von 1 mg/mL und schütze den Wirkstoff effektiv vor Zersetzung. Durch die Formulierung von VAS3947 als halbfeste Mikroemulsion konnte die Wasserlöslichkeit ebenfalls gesteigert werden, allerdings längst nicht in dem Maße wie durch die Cyclodextrine. Neben der Formulierungsentwicklung wurde eine physiko-chemische Charakterisierung des Wirkstoffes durchgeführt, um wichtige Parameter wie zum Beispiel die log P- und pKs-Werte einschätzen zu können. Des Weiteren wurde eine HPLC-Methode entwickelt und validiert, um die erzielte Löslichkeit quantifizieren zu können. Ein großes Problem dieses Wirkstoffes und damit aller Derivate vom Triazolopyrimidine-Typ, welche die Vasopharm GmbH in der Entwicklung hat, ist die mangelnde chemische Stabilität aufgrund einer Halbaminal-Partialstruktur im Molekül. Durchgeführte Stabilitätsuntersuchungen sowie eine umfangreiche biopharmazeutische Charakterisierung bestätigten letztendlich, dass eine weitere Entwicklung dieser Wirkstoffe aufgrund ihrer ungenügenden Stabilität und ihrer hohen Zytotoxizität nicht möglich ist. Die niedrige Wasserlöslichkeit stellt ein zusätzliches Problem dar, das sich durch eine gezielte Formulierungsentwicklung lösen lässt. KW - Springs and Parachutes KW - Formulation development KW - Poorly water soluble drugs KW - ionic liquids KW - Imatinib Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154311 ER - TY - THES A1 - Balk, Anja T1 - Ionic liquids of active pharmaceutical ingredients: A novel platform addressing solubility challenges of poorly water soluble drugs T1 - Ionische Flüssigkeiten von Arzneistoffen: Ein neues Konzept für Löslichkeitsprobleme von schwer wasserlöslichen Wirkstoffen N2 - Starting in the late 1990s ionic liquids (ILs) gained momentum both in academia as well as industry. ILs are defined as organic salts with a melting point below 100 °C. Active pharmaceutical ingredients (APIs) may be transferred into ILs by creating salts with a bulky counterion with a soft electron density. ILs have demonstrated the potential to tune important pharmaceutical features such as the solubility and the dissolution rate, particularly addressing the challenge of poor water soluble drugs (PWSD). Due to the tunability of ILs, modification of physico-chemical properties of APIs may be envisioned without any modifications of the chemical structure. In the first chapter the potential as well as the limitation of ILs are discussed. The chapter commences with an overview of preparation and characterization of API-ILs. Moreover, examples for pharmaceutical parameters are presented which may be affected by IL formation, including the dissolution rate, kinetic solubility or hygroscopicity as well as biopharmaceutical performance and toxicology. The impact of IL formation on those pharmaceutically relevant features is highlighted, resulting in a blueprint for a novel formulation concept to overcome PWSD challenges without the need for structural changes of the API. Within the second chapter the IL concept is detailed for one specific API - counterion combination. A poorly water soluble acidic API against migraine attacks was transformed into an IL in an effort to minimize the time to maximum plasma concentration (tmax) and optimize the overall bioavailability. These studies were conducted in parallel to a prodrug of the API for comparison of the IL strategy versus a strategy involving modification of the API’s structure. A significantly longer duration of API supersaturation and a 700 fold faster dissolution rate of the IL in comparison to the free acid were obtained and the underlying mechanism was elucidated. The transepithelial absorption was determined using Caco-2 cell layers. For the IL about 3 times more substance was transported in comparison to the prodrug when substances were applied as suspensions, despite the higher permeability of the prodrug, as increased solubility of the IL exceeded this effect. Cytotoxicity of the counterion was assessed in hepatic, renal and macrophage cell lines, respectively, and IC50 values were in the upper µM / lower mM range. The outcome of the study suggested the IL approach instrumental for tuning biopharmaceutical properties, without structural changes of the API as required for preparation of prodrugs. Thus the toolbox for formulation strategies of poorly water soluble drugs could be extended by an efficient concept. The third chapter focuses on the effect of different counterions on the physico-chemical properties of an API-IL, in particular to overcome the challenge of poor water solubility. Therefore, the same poorly water soluble acidic API against migraine attacks mentioned above was combined with 36 counterions resulting in ILs and low lattice enthalpy salts (LLES). Depending on the counterions, different dissolution rates, durations of supersaturation and hygroscopicities were obtained and release profiles could be tailored from immediate to sustained release. Besides, in vitro the cytotoxicity of the counterions was assessed in three cell lines. Using molecular descriptors such as the number of hydrophobic atoms, the graph theoretical diameter and the number of positive charges of the counterion, the dissolution rate, supersaturation and hygroscopicity as well as the cytotoxicity of counterions could be adequately modeled, rendering it possible to predict properties of new LLESs. Within the forth chapter different poorly water soluble APIs were combined with the counterion tetrabutylphosphonium (TBP) studying the impact on the pharmaceutical and physical properties of the APIs. TBP-ILs and low lattice enthalpy salts were prepared of the acidic APIs Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole and Tolbutamide. NMR and IR spectroscopy, DSC, XRPD, DVS and dissolution rate measurements, release profiles and saturation concentration measurements were used to characterize the free acids and TBP salts as compared to the corresponding sodium salts. The TBP salts as compared to the free acids displayed lower melting points and glass transition temperatures and up to 1000 times higher dissolution rates. The increase in the dissolution rate directly correlated with the salts’ hygroscopicity, an aspect which is critically discussed in terms of pharmaceutical translation challenges. In summary TBP ILs of solid salts were proved instrumental to approach the challenge of poor water solubility. The outcome profiled tailor-made counterions as a powerful formulation strategy to address poor water solubility, hence bioavailability and ultimately therapeutic potential of challenging APIs. In summary, a plethora of ILs and LLESs were prepared by combination of different acidic APIs and counterions. The IL and LLESs concept was compared to conventional salt and prodrug strategies. By choice of the counterion, biopharmaceutical relevant parameters were deliberately modified and release profiles were tuned ranging from immediate to prolonged release. The impact of distinct structural counterion features controlling the dissolution, supersaturation, hygroscopicity and counterion cytotoxicity were identified, correlations were presented and predictive models were built. ILs and LLESs could be proven to be a powerful concept for the formulation of poorly water soluble acidic APIs. N2 - Seit etwa 1990 haben Ionische Flüssigkeiten (IL) großes Interesse sowohl in der universitären als auch in der industriellen Forschung geweckt. ILs werden als organische Salze definiert, die einen Schmelzpunkt von unter 100 °C aufweisen. Arzneistoffe können in ILs umgewandelt werden, indem man Salze herstellt, mit einem voluminösen Gegenion mit delokalisierter Elektronendichte. ILs ermöglichen es wichtige pharmazeutische Eigenschaften wie Löslichkeit und Auflösungsgeschwindigkeit bewusst zu verändern, und im Besonderen stellen sie eine Möglichkeit dar, die Herausforderung, die schwer wasserlösliche Arzneistoffe mit sich bringen, zu bewältigen. Aufgrund der Variabilität von ILs, wird die Anpassung von physikochemischen Eigenschaften von Wirkstoffen denkbar, ohne die chemische Struktur des Stoffes zu modifizieren. Im ersten Kapitel werden die Potentiale aber auch die Grenzen von ILs dargestellt. Zu Beginn des Kapitels wird eine Übersicht über die Herstellung und Charakterisierung von ILs gegeben. Des Weiteren werden pharmazeutisch relevante Parameter gezeigt, die durch die IL Herstellung beeinflusst werden können, wie beispielsweise die Auflösungsgeschwindigkeit, die kinetische Löslichkeit oder die Hygroskopizität. Daneben können biopharmazeutische Größen und die Toxizität modifiziert werden. Der Einfluss der IL Bildung auf diese pharmazeutisch relevanten Parameter wird zusammengefasst und ein Formulierungskonzept aufgezeigt, um die schlechte Wasserlöslichkeit von Arzneistoffen zu überwinden ohne den Wirkstoff strukturell zu verändern. Im zweiten Kapitel wird das IL Konzept für eine spezifische Wirkstoff-Gegenion Kombination gezeigt. Ein schwer wasserlöslicher Arzneistoff gegen Migräne wird in ein IL umgewandelt, um eine schnellere und bessere Bioverfügbarkeit im Vergleich zu einem Prodrug zu erreichen. Eine signifikant verlängerte Übersättigung des Wirkstoffes und eine 700-fach schnellere Auflösung des ILs im Vergleich zur freien Säure wurden gemessen und der zugrunde liegende Mechanismus aufgeklärt. Die transepitheliale Aufnahme wurde anhand von Caco-2 Zellen untersucht. Vom IL wurde 3mal mehr Substanz transportiert als von dem Prodrug, wenn Suspensionen der Substanzen appliziert wurden und dies trotz der höheren Permeabilität des Prodrugs, da die verbesserte Löslichkeit des ILs hier überwog. Die Zytotoxizität des Gegenions wurde in einer Leber- und einer Nierenzellinie und in Makrophagen getestet und die IC50 Werte lagen im oberen µM- und unteren mM-Bereich. Die Ergebnisse der Untersuchungen legen dar, dass das IL Konzept hilfreich sein kann, um biopharmazeutische Eigenschaften zu variieren, ohne strukturelle Veränderung des Arzneistoffes, wie es für ein Prodrug nötig ist. Entsprechend konnten die Strategien, um schwer wasserlösliche Arzneistoffe zu formulieren, um ein neues und effizientes Konzept ergänzt werden. Der Fokus des dritten Kapitels liegt auf dem Einfluss von verschiedenen Gegenionen auf die physikochemischen Eigenschaften von Arzneistoff-ILs, insbesondere um Probleme aufgrund von schlechter Wasserlöslichkeit zu lösen. Dazu wurde der bereits im zweiten Kapitel genannte, saure und schwer wasserlösliche Arzneistoff gegen Migräne mit 36 Gegenionen kombiniert, wodurch ILs und Salze mit einer geringen Gitterenthalpie (LLES) erhalten wurden. In Abhängigkeit vom Gegenion wurden verschiedene Auflösungsgeschwindigkeiten, Übersättigungsdauern und Hygroskopizitäten erhalten. Durch Verändern des Gegenions konnte sowohl eine sofortige als auch verzögerte Freisetzung des Arzneistoffs erreicht werden. Daneben wurde in vitro die Zytotoxizität in drei Zelllinien bestimmt. Mittels zwei-dimensionaler Deskriptoren, wie der Anzahl der hydrophoben Atomen, dem graphentheoretischen Durchmesser und der Anzahl an positiven Ladungen des Gegenions, konnten die Auflösungsgeschwindigkeit, die Übersättigung und die Hygroskopizität sowie die Zytotoxizität des Gegenions berechnet werden, wodurch es gleichzeitig möglich wird, diese Eigenschaften für neue LLES vorherzusagen. Im vierten Kapitel werden verschiedene schwer wasserlösliche Arzneistoffe mit dem Gegenion Tetrabutylphosphonium (TBP) kombiniert und der Einfluss auf die pharmazeutischen und physikochemischen Eigenschaften des Wirkstoffes untersucht. TBP-ILs und Salze mit niedrigem Schmelzpunkt wurden von den sauren Arzneistoffen Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazin, Sulfamethoxazol und Tolbutamid hergestellt. NMR- und IR-Spektroskopie, DSC, XRPD, DVS und Auflösungsgeschwindigkeitsmessungen wurden verwendet, um die freien Säuren und die TBP-Salze im Vergleich zu den entsprechenden Natrium-Salzen zu untersuchen. Die TBP-Salze zeigten im Vergleich zu den freien Säuren niedrigere Schmelzpunkte und Glasübergangstemperaturen und eine bis zu 1000-fach schnellere Auflösungsgeschwindigkeit. Ein Nachteil der Salze, die eine schneller Auflösungsrate zeigten, war die damit einhergehende erhöhte Hygroskopizität. Zusammenfassend lässt sich sagen, dass die Herstellung von flüssigen und festen TBP-Salzen hilfreich sein kann, um die Wasserlöslichkeit von Arzneistoffen zu verbessern. Die Untersuchungen lassen den Schluss zu, dass durch maßgeschneiderte Gegenionen neue Formulierungsstrategien für schlecht wasserlösliche Arzneistoffe zugänglich werden, wodurch die Bioverfügbarkeit und der therapeutische Nutzen optimiert werden kann. Insgesamt wurde eine Vielzahl von ILs und LLESs durch die Kombination von verschiedenen sauren Arzneistoffen und Gegenionen hergestellt. Das IL- und LLES-Konzept wurde mit der klassischen Salz– und Prodrug-Strategie verglichen. Durch die Wahl des Gegenions konnten biopharmazeutisch Parameter bewusst verändert werden und die Freisetzungsprofile von sofortiger bis hin zu verzögerter Freisetzung gewählt werden. Die strukturellen Merkmale der Gegenionen, die entscheidend für die Auflösungsgeschwindigkeit, die Übersättigung, die Hygroskopizität und die Gegenionen-Zytotoxizität waren, konnten gezeigt werden und Berechnungen dazu wurden präsentiert. Abschließend lässt sich sagen, dass die Herstellung von ILs und LLESs ein wirkungsvolles Konzept ist, um schwer wasserlösliche, saure Arzneistoffe zu formulieren. KW - Arzneimittel KW - Wirkstofffreisetzung KW - Löslichkeit KW - Salz KW - Ionic Liquids KW - Poorly water soluble drugs KW - Active pharmaceutical ingredients KW - Supersaturation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121925 ER -