TY - THES A1 - Landersdorfer, Cornelia T1 - Modern pharmacokinetic-pharmacodynamic techniques to study physiological mechanisms of pharmacokinetic drug-drug interactions and disposition of antibiotics and to assess clinical relevance T1 - Moderne pharmakokinetisch-pharmakodynamische Methoden zur Untersuchung physiologischer Mechanismen von pharmakokinetischen Arzneistoffinteraktionen und Disposition von Antibiotika und zur Abschätzung klinischer Relevanz N2 - There are numerous areas of application for which PKPD models are a valuable tool. We studied dose linearity, bone penetration and drug-drug interactions of antibiotics by PKPD modeling. Knowledge about possible saturation of elimination pathways at therapeutic concentrations is important for studying the probability of successful treatment of dosage regimens via MCS at various doses, other modes of administration, or both. We studied the dose linearity of flucloxacillin and piperacillin. For data analysis of the dose linearity studies, population PK modeling and MCS was used. Population PK has been reported to detect saturable elimination at lower doses, and to estimate BSV more precisely than the STS approach. The variability in PK and the expected variability in PD are combined in a MCS to predict the probability of successful treatment. Flucloxacillin showed no saturation of elimination at the studied doses of 500 mg and 1000 mg. Comparison of various dosage regimens showed, that only one third of the daily dose is needed with prolonged or continuous infusion to achieve the same probability of successful treatment as short-term infusions at the full dose. For serious infections with sensitive staphylococci that are treated with intravenous flucloxacillin, prolonged infusion and continuous infusion are an appealing treatment option. Contrary to flucloxacillin, renal elimination and to a lesser extent also nonrenal elimination of piperacillin were saturable at therapeutic concentrations. Renal clearance decreased by 24% (p = 0.02) after a dose of 3000 mg piperacillin compared to the 1500 mg dose. A model without saturable elimination predicted PTA expectation values that were 6 to 11% lower for high dose short-term infusions and 2 to 5% higher for low dose continuous infusions, compared to models with saturable elimination. These differences depend on the MIC distributions of the local hospital. However, more accurate estimates for the PTA expectation value can be obtained by including an existent saturable elimination pathway into the PK model. Developing a mechanistic model of an interaction allows one to predict the extent of the interaction for other doses of drug and inhibitor. We studied the interactions between gemifloxacin and probenecid, between ciprofloxacin, its metabolite M1 and probenecid, and between flucloxacillin and piperacillin. Mechanistic models for drug-drug interactions were developed by the STS approach. This approach directly accounts for the concentration dependence of an interaction and describes the full time course of an interaction. Probenecid significantly inhibited the renal elimination of gemifloxacin, ciprofloxacin and ciprofloxacin’s metabolite M1, and slightly decreased nonrenal clearance of gemifloxacin. Piperacillin significantly decreased renal and nonrenal clearance of flucloxacillin, but hardly vice versa. For all three interactions competitive inhibition of a capacity-limited renal elimination pathway was identified as the most likely mechanism. As those drugs are all actively secreted in the renal tubules, competitive interaction is physiologically reasonable. Probenecid had a lower affinity to the renal transporter than gemifloxacin, ciprofloxacin and M1. Due to its substantially higher concentrations, probenecid inhibited the elimination of the quinolones. The affinity of piperacillin for the renal transporter was 13 times higher compared to flucloxacillin. Piperacillin PK was only slightly affected by flucloxacillin. PK interactions with piperacillin are likely to occur also with other betalactam combinations. PK interactions may be useful to improve the PD profile of an antibiotic, however possibly increased risks for side effects (e.g. risk of rash for gemifloxacin and probenecid) have to be considered. N2 - Es gibt viele Anwendungsgebiete für die PKPD-Modelle wertvoll sind. In der vorliegenden Arbeit wurden Studien zu Dosislinearität, Knochenpenetration und Arzneistoffinteraktionen von Antibiotika mit Hilfe von PKPD-Modellen ausgewertet. Um die Wahrscheinlichkeit einer erfolgreichen Therapie durch Dosierungsregime mit verschiedenen Dosen, Verabreichungsmethoden oder beidem zu studieren, ist es nötig, Kenntnisse über möglicherweise vorhandene, bei therapeutischen Konzentrationen sättigbare Eliminationswege zu haben. Flucloxacillin und Piperacillin wurden auf ihre Dosislinearität untersucht. Zur Datenanalyse der Dosislinearitätsstudien wurden PopulationsPK-Modelle und MCS verwendet. Mit Hilfe von PopulationsPK kann eine sättigbare Elimination schon bei geringeren Dosen erkannt werden, und die Variabilität zwischen den Probanden kann genauer abgeschätzt werden als mit der STS-Methode. In einer MCS wird die Variabilität in der PK mit der erwarteten Variabilität in der PD kombiniert, um die Wahrscheinlichkeit einer erfolgreichen Behandlung vorherzusagen. Flucloxacillin zeigte bei 500 mg und 1000 mg keine Sättigung der Elimination. Ein Vergleich verschiedener Dosierungsregime zeigte, dass bei mehrstündiger oder kontinuierlicher Infusion im Vergleich zur Kurzzeitinfusion nur ein Drittel der Dosis benötigt wird, um die gleiche Wahrscheinlichkeit für eine erfolgreiche Behandlung zu erreichen. Für die Behandlung von schweren Infektionen durch empfindliche Staphylokokken ist mehrstündige oder kontinuierliche Infusion eine attraktive Möglichkeit. Im Gegensatz zu Flucloxacillin war die renale, und in einem geringeren Ausmaß auch die nicht-renale Elimination von Piperacillin bei therapeutischen Dosen sättigbar. Die renale Clearance war nach der 3000 mg Dosis um 24% (p = 0.02) verringert im Vergleich zur 1500 mg Dosis. Ein Modell ohne sättigbare Elimination sagte für hochdosierte Kurzzeitinfusionen 6 bis 11% niedrigere, und für niedrig dosierte kontinuierliche Infusion 2 bis 5% höhere Erwartungswerte für die Erfolgswahrscheinlichkeit voraus, als Modelle mit sättigbarer Elimination. Diese Unterschiede hängen von den minimalen Hemmkonzentrationen der Pathogene im jeweiligen Krankenhaus ab. Durch die Berücksichtigung eines vorhandenen sättigbaren Eliminationsweges im Modell kann der Erwartungswert für die Erfolgswahrscheinlichkeit genauer abgeschätzt werden. Die Entwicklung eines mechanistischen Interaktionsmodells ermöglicht es, das Ausmaß einer Interaktion für andere als die hier eingesetzten Dosen von Arzneistoff und Inhibitor vorherzusagen. In der vorliegenden Arbeit wurden die Interaktionen zwischen Gemifloxacin und Probenecid, sowie zwischen Ciprofloxacin, dessen Metaboliten M1 und Probenecid, und zwischen Flucloxacillin und Piperacillin untersucht. Die mechanistischen Interaktionsmodelle wurden mit Hilfe der STS-Methode entwickelt. Diese Methode bezieht die Konzentrationsabhängigkeit einer Interaktion direkt mit ein und beschreibt den vollständigen zeitlichen Verlauf der Interaktion. Probenecid hemmte die renale Elimination von Gemifloxacin, Ciprofloxacin und M1 signifikant und verringerte leicht die nicht-renale Clearance von Gemifloxacin. Piperacillin verminderte die renale und nicht-renale Clearance von Flucloxacillin signifikant. Für alle drei Interaktionen wurde eine kompetitive Inhibition eines sättigbaren renalen Eliminationsweges als wahrscheinlichster Mechanismus identifiziert. Da alle untersuchten Arzneistoffe aktiver renaler Sekretion unterliegen, ist eine kompetitive Interaktion auch physiologisch sinnvoll. Die Affinität von Probenecid zum renalen Transporter war niedriger als diejenige von Gemifloxacin, Ciprofloxacin und M1. Trotzdem wurde die Elimination der Chinolone durch Probenecid gehemmt, da Probenecid wesentlich höhere Konzentrationen erreichte. Die Affinität von Piperacillin zum renalen Transporter war 13 Mal höher als diejenige von Flucloxacillin. Die PK von Piperacillin wurde durch Flucloxacillin nur leicht beeinflusst. Es ist wahrscheinlich, dass Piperacillin auch mit anderen Betalaktamen PK-Interaktionen eingeht. PK-Interaktionen können zur Verbesserung des PD-Profils eines Antibiotikums genutzt werden, allerdings muss dabei auch das möglicherweise erhöhte Nebenwirkungsrisiko (z.B. Hautausschlag bei Probenecid und Gemifloxacin) bedacht werden. KW - Populationskinetik KW - Pharmakodynamik KW - Arzneimittelwechselwirkung KW - Populationspharmakokinetik KW - Pharmakodynamik KW - mechanistische Arzneistoffinteraktionen KW - Knochenpenetration KW - Dosislinearität KW - population pharmacokinetics KW - pharmacodynamics KW - mechanistic drug-drug interactions KW - bone penetration KW - dose linearity Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19340 ER - TY - THES A1 - Bulitta, Jürgen T1 - Innovative techniques for selecting the dose of antibiotics in empiric therapy - focus on beta-lactams and cystic fibrosis patients T1 - Innovative Techniken zur Dosiswahl von Antibiotika in der empirischen Therapie – Schwerpunkt Betalaktame und Chinolone N2 - Background: Population pharmacokinetic-pharmacodynamic (PKPD) modeling and simulations were applied to identify optimal dosage regimens for antibiotics. As the emergence of bacterial resistance is increasing and as only a few new antibiotics became available during the last decade, optimal use of established agents and preserving their effectiveness seems vital. Objectives: 1) To find the descriptor of body size and body composition which allows to achieve target concentrations and target effects in patients with cystic fibrosis (CF) most precisely. 2) To identify the mode of administration with the highest probability of successful treatment for intravenous beta-lactams. 3) To develop formulas for optimal dose selection for patients of various body size. General methods: Drug analysis in plasma and urine was performed by HPLC or LC-MS/MS in a single laboratory, at the IBMP. Drug analysis was not done by the author of this thesis. We used non-compartmental analysis and parametric population PK analysis for all studies. We used non-parametric bootstrapping to assess the uncertainty of PK parameters for our meta-analysis of the PK in CF-patients and healthy volunteers. Plasma concentration time profiles for several thousand virtual subjects were simulated by MCS which account for average PK parameters, their between subject variability (BSV), and patient specific demographic data. Convincing literature data show that the duration of non-protein bound concentration above MIC (fT>MIC) best predicts the microbiological and clinical success of beta-lactams and the area under the non-protein bound concentration curve divided by the MIC (fAUC/MIC) best predicts success for quinolones. We used PKPD targets from literature that were based on the fT>MIC or fAUC/MIC, respectively. Achieving a PKPD target was used as a surrogate measure for successful treatment. In our MCS, we calculated the fT>MIC or fAUC/MIC for all simulated concentration profiles and compared it to the value of the PKPD target. The fraction of subjects who achieved the target at the respective MIC approximates the probability of target attainment (PTA). The PTA can be interpreted as probability of successful treatment under certain assumptions. Studies in CF-patients Methods: We had data from ten studies (seven beta-lactams and three quinolones) in CF-patients which all included a healthy volunteer control group. Clinical procedures were very similar for all ten studies. Both subject groups had study conditions as similar as possible. We had data on 90 CF-patients (average +/- SD, age: 21+/-3.6 yrs) and on 111 healthy volunteers (age: 25+/-3.5 yrs). We compared the average clearance and volume of distribution between CF-patients and healthy volunteers for various body size descriptors including total body weight (WT), fat-free mass (FFM), and predicted normal weight (PNWT). We considered linear and allometric scaling of PK parameters by body size and used a meta-analysis based on population PK parameters for the comparison of CF-patients and healthy volunteers. Target concentrations can be achieved more precisely, if a size descriptor reduces the random, unexplained BSV. Therefore, we studied the reduction of unexplained BSV for each size descriptor relative to linear scaling by WT, since doses for CF-patients are commonly selected as mg/kg WT. Results: Without accounting for body size, average total clearance was 15% lower (p=0.005) and volume of distribution at steady-state was 17% lower (p=0.001) in CF-patients compared to healthy volunteers. For linear scaling by WT, average total clearance in CF-patients divided by total clearance in healthy volunteers was 1.15 (p=0.013). This ratio was 1.06 (p=0.191) for volume of distribution. A ratio of 1.0 indicates that CF-patients and healthy volunteers of the same body size have identical average clearances or volumes of distribution. For allometric scaling by FFM or PNWT, the ratio of total clearance and volume of distribution between CF-patients and healthy volunteers was within 0.80 and 1.25 for almost all drugs and the average ratio was close to 1. Allometric scaling by FFM or PNWT reduced the unexplained BSV in renal clearance by 24 to 27% (median of 10 drugs) relative to linear scaling by WT. The unexplained BSV was reduced for seven or eight of the ten drugs by more than 15% and the remaining two or three drugs had essentially unchanged (+/-15%) unexplained BSVs in renal clearance. Conclusions: The PK in CF-patients was comparable to the PK in healthy volunteers after accounting for body size and body composition by allometric scaling with FFM or PNWT. Target concentrations and target effects in CF-patients can be achieved most precisely by dose selection based on an allometric size model with FFM or PNWT. Future studies are warranted to study the clinical superiority of allometric dosing by FFM or PNWT compared to dose selection as mg/kg WT in CF-patients. N2 - Zielsetzungen: 1) Den Deskriptor für Körpergröße und Körperzusammensetzung zu finden, mit dem Ziel-Konzentrationen und Ziel-Effekte in Mukoviszidose-Patienten (engl.: „cystic fibrosis“, CF-Patienten) am genauesten erzielt werden können. 2) Suche nach Dosierungsregimen mit der höchsten Wahrscheinlichkeit für erfolgreiche Therapie mit intravenösen Beta-Laktamen. Allgemeine Methoden: Die Analytik wurde mittels HPLC oder LC-MS/MS in einem einzigen Labor durchgeführt, im Labor des IBMP. Wir verwendeten nicht-kompartimentelle Analyse und parametrische Populations-PK-Analyse in allen Studien. Wir verwendeten nicht-parametrische Bootstrap-Techniken um die Unsicherheit in den PK-Parametern für unsere Meta-Analyse der PK in CF-Patienten und gesunden Probanden zu bestimmen. Die Plasma-Konzentrations-Zeit-Profile für mehrere tausend Probanden wurden mittels MCS simuliert. MCS berücksichtigt die mittleren PK-Parameter, deren Variabilität zwischen Probanden (engl.: „between subject variability“, BSV), und die patientenspezifischen demographischen Daten. Überzeugende Ergebnisse aus der Literatur zeigen, dass die Dauer der nicht-proteingebundenen Konzentration oberhalb der MHK (fT>MHK) am besten den mikrobiologischen und klinischen Erfolg von Beta-Laktamen vorhersagt und dass die Fläche unter der nicht-proteingebundenen Konzentration dividiert durch die MHK (fAUC/MHK) am besten den Erfolg für Chinolone anzeigt. Wir verwendeten PKPD Zielwerte aus der Literatur die auf der fT>MHK oder der fAUC/MHK basieren. Das Erreichen eines PKPD Zielwertes wurde als Surrogat für erfolgreiche Behandlung angesehen. Studien in CF-Patienten Methoden: Wir verwendeten Daten von zehn Studien (sieben Beta-Laktame und drei Chinolone) in CF-Patienten, die alle über eine Kontrollgruppe mit gesunden Probanden verfügten. Die klinische Durchführung dieser Studien war sehr gut vergleichbar. CF-Patienten und gesunde Probanden hatten so ähnliche Studienbedingungen wie möglich. Unser Datensatz beinhaltete 90 CF-Patienten (Mittelwert +/- SD, Alter: 21+/-3.6 Jahre) und 111 gesunde Probanden (Alter: 25+/-3.5 Jahre). Wir verglichen die mittlere Clearance und das mittlere Verteilungsvolumen zwischen CF-Patienten und gesunden Probanden nach Normierung auf verschiedene Deskriptoren für Körpergröße. Diese beinhalteten Gesamtkörpergewicht (WT), fettfreie Körpermasse (FFM) und das vorhergesagte Normalgewicht (engl.: „predicted normal weight“, PNWT). Wir verwendeten lineare und allometrische Skalierung der PK Parameter mit der Körpergröße und verglichen die Populations-PK-Parameter zwischen CF-Patienten und gesunden Probanden in einer Meta-Analyse. Zielkonzentrationen können präziser erreicht werden, wenn ein Deskriptor für die Körpergröße die zufällige, unerklärte BSV verringert. Daher untersuchten wir die Verringerung der unerklärten BSV für einige Körpergrößen-Deskriptoren. Lineares Skalieren mit WT nahmen wir als Vergleichswert für die BSV, da die Dosen für CF-Patienten meist als mg/kg WT berechnet werden. Ergebnisse: Ohne Beachtung der Körpergröße war die mittlere Gesamtkörperclearance um 15% niedriger (p=0.005) in CF-Patienten und das Verteilungsvolumen im Steady-State um 17% niedriger (p=0.001) in CF-Patienten verglichen mit gesunden Probanden. Bei linearer Skalierung mit WT, war die mittlere Gesamtkörperclearance in CF-Patienten dividiert durch die Gesamtkörperclearance in Gesunden 1.15 (p=0.013). Dieser Quotient betrug 1.06 (p=0.191) für das Verteilungsvolumen. Bei einem Quotienten von 1.0 hätten CF-Patienten und gesunde Probanden der gleichen Körpergröße identische mittlere Clearances bzw. Verteilungsvolumina. Für allometrisches Skalieren mit FFM oder PNWT lagen fast alle Quotienten für Gesamtkörperclearance und Verteilungsvolumen zwischen CF-Patienten und Gesunden zwischen 0.80 und 1.25 und die mittleren Quotienten waren nahe 1.0. Allometrisches Skalieren mit FFM oder PNWT reduzierte die unerklärte BSV in der renalen Clearance um 24 bis 27% (Median der 10 Substanzen) verglichen mit linearem Skalieren mit WT. Sieben oder acht der zehn Substanzen hatten eine Verringerung der unerklärten BSV in der renalen Clearance um mehr als 15% und die übrigen zwei bzw. drei Substanzen erreichten eine ähnliche (+/-15%) unerklärte BSV für renale Clearance. Schlussfolgerungen: Die PK in CF-Patienten war vergleichbar mit der PK in Gesunden, wenn man Körpergröße und Körperzusammensetzung durch allometrisches Skalieren mit FFM oder PNWT berücksichtigte. Zielkonzentrationen und Zieleffekte in CF-Patienten konnten durch allometrisches Skalieren mit FFM oder PNWT am genausten erreicht werden. Zukünftige Studien in CF-Patienten zur klinischen Überlegenheit von allometrischer Dosiswahl mit FFM oder PNWT verglichen mit Dosiswahl als mg/kg WT sollten durchgeführt werden. KW - Populationskinetik KW - Pharmakodynamik KW - Lactamantibiotikum KW - Mukoviszidose KW - Populationspharmakokinetik KW - Pharmakodynamik KW - Antibiotika KW - Mukovisdizose KW - Monte Carlo Simulation KW - population pharmacokinetics KW - pharmacodynamics KW - antibiotics KW - cystic fibrosis KW - Monte Carlo simulation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19353 ER -