TY - JOUR A1 - Rubio-Cosials, Anna A1 - Schulz, Eike C. A1 - Lambertsen, Lotte A1 - Smyshlyaev, Georgy A1 - Rojas-Cordova, Carlos A1 - Forslund, Kristoffer A1 - Karaca, Ezgi A1 - Bebel, Aleksandra A1 - Bork, Peer A1 - Barabas, Orsolya T1 - Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance JF - Cell N2 - Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes. KW - DNA complex KW - crystallography KW - Tn1549 transposon KW - Tn916-like transposon family KW - conjugative transposition KW - tyrosine recombinase KW - antibiotic resistance KW - gene transfer KW - vancomycin KW - multidrug-resistant bacteria Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227085 VL - 173 IS - 1 ER - TY - JOUR A1 - Mühlberg, Eric A1 - Umstätter, Florian A1 - Domhan, Cornelius A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Krause, Andreas A1 - Kleist, Christian A1 - Beijer, Barbro A1 - Zimmermann, Stefan A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci JF - Pharmaceuticals N2 - Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure–activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria. KW - antibiotics KW - multidrug-resistant bacteria KW - enterococci KW - vancomycin KW - structural modification KW - fatty acids KW - polycationic peptides Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205879 SN - 1424-8247 VL - 13 IS - 6 ER -