TY - JOUR A1 - Recke, Andreas A1 - Konitzer, Sarah A1 - Lemcke, Susanne A1 - Freitag, Miriam A1 - Sommer, Nele Maxi A1 - Abdelhady, Mohammad A1 - Amoli, Mahsa M. A1 - Benoit, Sandrine A1 - El-Chennawy, Farha A1 - Eldarouti, Mohammad A1 - Eming, Rüdiger A1 - Gläser, Regine A1 - Günther, Claudia A1 - Hadaschik, Eva A1 - Homey, Bernhard A1 - Lieb, Wolfgang A1 - Peitsch, Wiebke K. A1 - Pföhler, Claudia A1 - Robati, Reza M. A1 - Saeedi, Marjan A1 - Sárdy, Miklós A1 - Sticherling, Michael A1 - Uzun, Soner A1 - Worm, Margitta A1 - Zillikens, Detlef A1 - Ibrahim, Saleh A1 - Vidarsson, Gestur A1 - Schmidt, Enno T1 - The p.Arg435His Variation of IgG3 With High Affinity to FcRn Is Associated With Susceptibility for Pemphigus Vulgaris-Analysis of Four Different Ethnic Cohorts JF - frontiers in Immunology N2 - IgG3 is the IgG subclass with the strongest effector functions among all four IgG subclasses and the highest degree of allelic variability among all constant immunoglobulin genes. Due to its genetic position, IgG3 is often the first isotype an antibody switches to before IgG1 or IgG4. Compared with the other IgG subclasses, it has a reduced half-life which is probably connected to a decreased affinity to the neonatal Fc receptor (FcRn). However, a few allelic variants harbor an amino acid replacement of His435 to Arg that reverts the half-life of the resulting IgG3 to the same level as the other IgG subclasses. Because of its functional impact, we hypothesized that the p.Arg435His variation could be associated with susceptibility to autoantibody-mediated diseases like pemphigus vulgaris (PV) and bullous pemphigoid (BP). Using a set of samples from German, Turkish, Egyptian, and Iranian patients and controls, we were able to demonstrate a genetic association of the p.Arg435His variation with PV risk, but not with BP risk. Our results suggest a hitherto unknown role for the function of IgG3 in the pathogenesis of PV. KW - immunology KW - dermatology KW - autoantibodies KW - allotype KW - pemphigus KW - Diagnose KW - pemphigoid KW - half-life KW - functional genetics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225073 VL - 9 ER - TY - JOUR A1 - Radeva, Mariya Y. A1 - Walter, Elias A1 - Stach, Ramona Alexandra A1 - Yazdi, Amir S. A1 - Schlegel, Nicolas A1 - Sarig, Ofer A1 - Sprecher, Eli A1 - Waschke, Jens T1 - ST18 Enhances PV-IgG-Induced Loss of Keratinocyte Cohesion in Parallel to Increased ERK Activation JF - Frontiers in Immunology N2 - Pemphigus is an autoimmune blistering disease targeting the desmosomal proteins desmoglein (Dsg) 1 and Dsg3. Recently, a genetic variant of the Suppression of tumorigenicity 18 (ST18) promoter was reported to cause ST18 up-regulation, associated with pemphigus vulgaris (PV)-IgG-mediated increase in cytokine secretion and more prominent loss of keratinocyte cohesion. Here we tested the effects of PV-IgG and the pathogenic pemphigus mouse anti-Dsg3 antibody AK23 on cytokine secretion and ERK activity in human keratinocytes dependent on ST18 expression. Without ST18 overexpression, both PV-IgG and AK23 induced loss of keratinocyte cohesion which was accompanied by prominent fragmentation of Dsg3 immunostaining along cell borders. In contrast, release of pro-inflammatory cytokines such as IL-1 alpha, IL-6, TNF alpha, and IFN-gamma was not altered significantly in both HaCaT and primary NHEK cells. These experiments indicate that cytokine expression is not strictly required for loss of keratinocyte cohesion. Upon ST18 overexpression, fragmentation of cell monolayers increased significantly in response to autoantibody incubation. Furthermore, production of IL-1 alpha and IL-6 was enhanced in some experiments but not in others whereas release of TNF-alpha dropped significantly upon PV-IgG application in both EV- and ST18-transfected HaCaT cells. Additionally, in NHEK, application of PV-IgG but not of AK23 significantly increased ERK activity. In contrast, ST18 overexpression in HaCaT cells augmented ERK activation in response to both c-IgG and AK23 but not PV-IgG. Because inhibition of ERK by U0126 abolished PV-IgG- and AK23-induced loss of cell cohesion in ST18-expressing cells, we conclude that autoantibody-induced ERK activation was relevant in this scenario. In summary, similar to the situation in PV patients carrying ST18 polymorphism, overexpression of ST18 enhanced keratinocyte susceptibility to autoantibody-induced loss of cell adhesion, which may be caused in part by enhanced ERK signaling. KW - pemphigus KW - desmosome KW - desmoglein KW - ST18 KW - ERK KW - cytokines Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224910 VL - 10 ER - TY - JOUR A1 - Schmitt, T. A1 - Egu, D.T. A1 - Walter, E. A1 - Sigmund, A.M. A1 - Eichkorn, R. A1 - Yazdi, A. A1 - Schmidt, E. A1 - Sárdy, M. A1 - Eming, R. A1 - Goebeler, M. A1 - Waschke, J. T1 - Ca\(^{2+}\) signalling is critical for autoantibody‐induced blistering of human epidermis in pemphigus JF - British Journal of Dermatology N2 - Background Pemphigus is a severe bullous autoimmune skin disease. Pemphigus foliaceus (PF) is characterized by antidesmoglein (Dsg) 1 IgG causing epidermal blistering; mucosal pemphigus vulgaris (mPV) by anti‐Dsg3 IgG inducing erosions in the mucosa; and mucocutaneous pemphigus vulgaris (PV) by affecting both, with autoantibodies targeting Dsg1 and Dsg3. Objectives To characterize the Ca\(^{2+}\) flux pathway and delineate its importance in pemphigus pathogenesis and clinical phenotypes caused by different antibody profiles. Methods Immunoprecipitation, Ca\(^{2+}\) flux analysis, Western blotting, immunofluorescence staining, dissociation assays and a human skin ex vivo model were used. Results PV IgG and PF IgG, but neither Dsg3‐specific monoclonal antibody (AK23) nor mPV IgG, caused Ca\(^{2+}\) influx in primary human keratinocytes. Phosphatidylinositol 4‐kinase α interacts with Dsg1 but not with Dsg3. Its downstream target – phospholipase‐C‐γ1 (PLC) – was activated by PV IgG and PF IgG but not AK23 or mPV IgG. PLC releases inositol 1,4,5‐trisphosphate (IP3) causing IP3 receptor (IP3R) activation and Ca2+ flux from the endoplasmic reticulum into the cytosol, which stimulates Ca2+ release‐activated channels (CRAC)‐mediated Ca\(^{2+}\) influx. Inhibitors against PLC, IP3R and CRAC effectively blocked PV IgG and PF IgG‐induced Ca\(^{2+}\) influx; ameliorated alterations of Dsg1 and Dsg3 localization, and reorganization of keratin and actin filaments; and inhibited loss of cell adhesion in vitro. Finally, inhibiting PLC or IP3R was protective against PV IgG‐induced blister formation and redistribution of Dsg1 and Dsg3 in human skin ex vivo. Conclusions Ca2+‐mediated signalling is important for epidermal blistering and dependent on the autoantibody profile, which indicates different roles for signalling complexes organized by Dsg1 and Dsg3. Interfering with PLC and Ca\(^{2+}\) signalling may be a promising approach to treat epidermal manifestations of pemphigus. KW - pemphigus KW - epidermis KW - Ca\(^{2+}\) signalling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262810 VL - 185 IS - 3 SP - 595 EP - 604 ER -