TY - JOUR A1 - Lüffe, Teresa M. A1 - Bauer, Moritz A1 - Gioga, Zoi A1 - Özbay, Duru A1 - Romanos, Marcel A1 - Lillesaar, Christina A1 - Drepper, Carsten T1 - Loss-of-Function Models of the Metabotropic Glutamate Receptor Genes Grm8a and Grm8b Display Distinct Behavioral Phenotypes in Zebrafish Larvae (Danio rerio) JF - Frontiers in Molecular Neuroscience N2 - Members of the family of metabotropic glutamate receptors are involved in the pathomechanism of several disorders of the nervous system. Besides the well-investigated function of dysfunctional glutamate receptor signaling in neurodegenerative diseases, neurodevelopmental disorders (NDD), like autism spectrum disorders (ASD) and attention-deficit and hyperactivity disorder (ADHD) might also be partly caused by disturbed glutamate signaling during development. However, the underlying mechanism of the type III metabotropic glutamate receptor 8 (mGluR8 or GRM8) involvement in neurodevelopment and disease mechanism is largely unknown. Here we show that the expression pattern of the two orthologs of human GRM8, grm8a and grm8b, have evolved partially distinct expression patterns in the brain of zebrafish (Danio rerio), especially at adult stages, suggesting sub-functionalization of these two genes during evolution. Using double in situ hybridization staining in the developing brain we demonstrate that grm8a is expressed in a subset of gad1a-positive cells, pointing towards glutamatergic modulation of GABAergic signaling. Building on this result we generated loss-of-function models of both genes using CRISPR/Cas9. Both mutant lines are viable and display no obvious gross morphological phenotypes making them suitable for further analysis. Initial behavioral characterization revealed distinct phenotypes in larvae. Whereas grm8a mutant animals display reduced swimming velocity, grm8b mutant animals show increased thigmotaxis behavior, suggesting an anxiety-like phenotype. We anticipate that our two novel metabotropic glutamate receptor 8 zebrafish models may contribute to a deeper understanding of its function in normal development and its role in the pathomechanism of disorders of the central nervous system. KW - nervous system KW - brain disorders KW - psychiatric disorders KW - brain development KW - excitatory/inhibitory imbalance KW - metabotropic glutamate (mGlu) receptor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277429 SN - 1662-5099 VL - 15 ER - TY - JOUR A1 - Rivero, Olga A1 - Alhama-Riba, Judit A1 - Ku, Hsing-Ping A1 - Fischer, Matthias A1 - Ortega, Gabriela A1 - Álmos, Péter A1 - Diouf, David A1 - van den Hove, Daniel A1 - Lesch, Klaus-Peter T1 - Haploinsufficiency of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of Genes Involved in Myelination and Sialylation JF - Frontiers in Genetics N2 - Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity. KW - sialyltransferase KW - sialic acid KW - psychiatric disorders KW - attention-deficit/hyperactivity disorder (ADHD) KW - prefrontal cortex KW - hippocampus KW - mouse model Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246855 SN - 1664-8021 VL - 12 ER - TY - JOUR A1 - Lechermeier, Carina G. A1 - Zimmer, Frederic A1 - Lüffe, Teresa M. A1 - Lesch, Klaus-Peter A1 - Romanos, Marcel A1 - Lillesaar, Christina A1 - Drepper, Carsten T1 - Transcript analysis of zebrafish GLUT3 genes, slc2a3a and slc2a3b, define overlapping as well as distinct expression domains in the zebrafish (Danio rerio) central nervous system JF - Frontiers in Molecular Neuroscience N2 - The transport of glucose across the cell plasma membrane is vital to most mammalian cells. The glucose transporter (GLUT; also called SLC2A) family of transmembrane solute carriers is responsible for this function in vivo. GLUT proteins encompass 14 different isoforms in humans with different cell type-specific expression patterns and activities. Central to glucose utilization and delivery in the brain is the neuronally expressed GLUT3. Recent research has shown an involvement of GLUT3 genetic variation or altered expression in several different brain disorders, including Huntington’s and Alzheimer’s diseases. Furthermore, GLUT3 was identified as a potential risk gene for multiple psychiatric disorders. To study the role of GLUT3 in brain function and disease a more detailed knowledge of its expression in model organisms is needed. Zebrafish (Danio rerio) has in recent years gained popularity as a model organism for brain research and is now well-established for modeling psychiatric disorders. Here, we have analyzed the sequence of GLUT3 orthologs and identified two paralogous genes in the zebrafish, slc2a3a and slc2a3b. Interestingly, the Glut3b protein sequence contains a unique stretch of amino acids, which may be important for functional regulation. The slc2a3a transcript is detectable in the central nervous system including distinct cellular populations in telencephalon, diencephalon, mesencephalon and rhombencephalon at embryonic and larval stages. Conversely, the slc2a3b transcript shows a rather diffuse expression pattern at different embryonic stages and brain regions. Expression of slc2a3a is maintained in the adult brain and is found in the telencephalon, diencephalon, mesencephalon, cerebellum and medulla oblongata. The slc2a3b transcripts are present in overlapping as well as distinct regions compared to slc2a3a. Double in situ hybridizations were used to demonstrate that slc2a3a is expressed by some GABAergic neurons at embryonic stages. This detailed description of zebrafish slc2a3a and slc2a3b expression at developmental and adult stages paves the way for further investigations of normal GLUT3 function and its role in brain disorders. KW - glucose transporter KW - nervous system KW - brain disorders KW - psychiatric disorders KW - brain development KW - GABA KW - GAD1 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201797 VL - 12 IS - 199 ER - TY - JOUR A1 - Ferero, Andrea A1 - Rivero, Olga A1 - Wäldchen, Sina A1 - Ku, Hsing-Ping A1 - Kiser, Dominik P. A1 - Gärtner, Yvonne A1 - Pennington, Laura S. A1 - Waider, Jonas A1 - Gaspar, Patricia A1 - Jansch, Charline A1 - Edenhofer, Frank A1 - Resink, Thérèse J. A1 - Blum, Robert A1 - Sauer, Markus A1 - Lesch, Klaus-Peter T1 - Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain JF - Frontiers in Cellular Neuroscience N2 - Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders. KW - serotonin KW - cadherin-13 (CDH13) KW - T-cadherin KW - neurodevelopment KW - psychiatric disorders KW - radial glia KW - dorsal raphe KW - prefrontal cortex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170313 VL - 11 IS - 307 ER - TY - JOUR A1 - Rivero, O A1 - Selten, MM A1 - Sich, S A1 - Popp, S A1 - Bacmeister, L A1 - Amendola, E A1 - Negwer, M A1 - Schubert, D A1 - Proft, F A1 - Kiser, D A1 - Schmitt, AG A1 - Gross, C A1 - Kolk, SM A1 - Strekalova, T A1 - van den Hove, D A1 - Resink, TJ A1 - Kasir, N Nadif A1 - Lesch, KP T1 - Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition JF - Translational Psychiatry N2 - Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo) phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13\(^{-/-}\) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13\(^{-/-}\) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. KW - genome-wide association KW - deficit hyperactivity disorder KW - psychiatric disorders KW - neurodevelopmental disorders KW - synaptic plasticity KW - response inhibition KW - positive interneurons KW - T-cadherin KW - long-term potentiation KW - attention deficit/hyperactivity disorder Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145218 VL - 5 IS - e655 ER - TY - JOUR A1 - Kohl, S. A1 - Gruendler, T. O. J. A1 - Huys, D. A1 - Sildatke, E. A1 - Dembek, T. A. A1 - Hellmich, M. A1 - Vorderwulbecke, M. A1 - Timmermann, L. A1 - Ahmari, S. E. A1 - Klosterkoetter, J. A1 - Jessen, F. A1 - Sturm, V. A1 - Visser-Vandewalle, V. A1 - Kuhn, J. T1 - Effects of deep brain stimulation on prepulse inhibition in obsessive-compulsive disorder JF - Translational Psychiatry N2 - Owing to a high response rate, deep brain stimulation (DBS) of the ventral striatal area has been approved for treatment-refractory obsessive-compulsive disorder (tr-OCD). Many basic issues regarding DBS for tr-OCD are still not understood, in particular, the mechanisms of action and the origin of side effects. We measured prepulse inhibition (PPI) in treatment-refractory OCD patients undergoing DBS of the nucleus accumbens (NAcc) and matched controls. As PPI has been used in animal DBS studies, it is highly suitable for translational research. Eight patients receiving DBS, eight patients with pharmacological treatment and eight age-matched healthy controls participated in our study. PPI was measured twice in the DBS group: one session with the stimulator switched on and one session with the stimulator switched off. OCD patients in the pharmacologic group took part in a single session. Controls were tested twice, to ensure stability of data. Statistical analysis revealed significant differences between controls and (1) patients with pharmacological treatment and (2) OCD DBS patients when the stimulation was switched off. Switching the stimulator on led to an increase in PPI at a stimulus-onset asynchrony of 200 ms. There was no significant difference in PPI between OCD patients being stimulated and the control group. This study shows that NAcc-DBS leads to an increase in PPI in tr-OCD patients towards a level seen in healthy controls. Assuming that PPI impairments partially reflect the neurobiological substrates of OCD, our results show that DBS of the NAcc may improve sensorimotor gating via correction of dysfunctional neural substrates. Bearing in mind that PPI is based on a complex and multilayered network, our data confirm that DBS most likely takes effect via network modulation. KW - nucleus KW - serotonin KW - schizophrenia KW - dopamine KW - double-blind KW - psychiatric disorders KW - in vivo KW - acoustic startle KW - reflex KW - modulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138300 VL - 5 IS - e675 ER -