TY - JOUR T1 - Search for new phenomena in a lepton plus high jet multiplicity final state with the ATLAS experiment using \(\sqrt{s}=13\) TeV proton-proton collision data JF - Journal of High Energy Physics N2 - A search for new phenomena in final states characterized by high jet multiplicity, an isolated lepton (electron or muon) and either zero or at least three \(b\)-tagged jets is presented. The search uses 36.1 fb\(^{−1}\) of \(\sqrt{s}=13\) TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider in 2015 and 2016. The dominant sources of background are estimated using parameterized extrapolations, based on observables at medium jet multiplicity, to predict the \(b\)-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits are extracted constraining four simplified models of \(R\)-parity-violating supersymmetry that feature either gluino or top-squark pair production. The exclusion limits reach as high as 2.1 TeV in gluino mass and 1.2 TeV in top-squark mass in the models considered. In addition, an upper limit is set on the cross-section for Standard Model \(t\overline{t}t\overline{t}\) production of 60 fb (6.5 × the Standard Model prediction) at 95% confidence level. Finally, model-independent limits are set on the contribution from new phenomena to the signal-region yields. KW - High energy physics KW - Beyond Standard Model KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172802 VL - 2017 IS - 09 ER - TY - JOUR T1 - Top-quark mass measurement in the all-hadronic \(t\overline{t}\) decay channel at \(\sqrt{s}=8\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - The top-quark mass is measured in the all-hadronic top-antitop quark decay channel using proton-proton collisions at a centre-of-mass energy of \(\sqrt{s}=8\) TeV with the ATLAS detector at the CERN Large Hadron Collider. The data set used in the analysis corresponds to an integrated luminosity of 20.2 fb\(^{−1}\). The large multi-jet background is modelled using a data-driven method. The top-quark mass is obtained from template fits to the ratio of the three-jet to the dijet mass. The three-jet mass is obtained from the three jets assigned to the top quark decay. From these three jets the dijet mass is obtained using the two jets assigned to the W boson decay. The top-quark mass is measured to be 173.72 ± 0.55 (stat.) ± 1.01 (syst.) GeV. KW - High energy physics KW - Hadron-Hadron scattering (experiments) KW - Top physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172762 VL - 2017 IS - 09 ER - TY - JOUR T1 - Searches for the \(Z\)γ decay mode of the Higgs boson and for new high-mass resonances in \({pp}\) collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - This article presents searches for the \({Zγ}\) decay of the Higgs boson and for narrow high-mass resonances decaying to \(Z\)γ, exploiting \(Z\) boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb\(^{−1}\) of \({pp}\) collisions at \(\sqrt{s}=13\) recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model \({pp} → H → {Z}γ\) production and decay) upper limit on the production cross section times the branching ratio for \({pp} → H → {Z}γ\) is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level. KW - High energy physics KW - Hadron-Hadron scattering (experiments) KW - Higgs physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172751 VL - 2017 IS - 10 ER - TY - JOUR T1 - Measurement of inclusive and differential cross sections in the \(H\) → \({ZZ}^*\) → \(4{ℓ}\) decay channel in \({pp}\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the \(H\) → \({ZZ^*}\) → \(4{ℓ}\) decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb\(^{−1}\). The inclusive fiducial cross section in the \(H\) → \({ZZ^*}\) → \(4{ℓ}\) decay channel is measured to be 3.62 ± 0.50(stat)\(^{+0.25}_{− 0.20}\) (sys) fb, in agreement with the Standard Model prediction of 2.91 ± 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework. KW - High energy physics KW - Hadron-Hadron scattering (experiments) KW - Higgs physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172724 VL - 2017 IS - 10 ER - TY - JOUR T1 - Search for top quark decays \(t → qH\), with \(H → γγ\), in \(\sqrt{s} = 13\) TeV \(pp\) collisions using the ATLAS detector JF - Journal of High Energy Physics N2 - This article presents a search for flavour-changing neutral currents in the decay of a top quark into an up-type (\({q = c, u}\)) quark and a Higgs boson, where the Higgs boson decays into two photons. The proton-proton collision data set analysed amounts to 36.1 fb\(^{−1}\) at \(\sqrt{s} = 13\) TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for, where one top quark decays into \(qH\) and the other decays into \(bW\). Both the hadronic and leptonic decay modes of the \(W\) boson are used. No significant excess is observed and an upper limit is set on the \({t → cH}\) branching ratio of 2.2 × 10\(^{−3}\) at the 95% confidence level, while the expected limit in the absence of signal is 1.6 × 10\(^{−3}\). The corresponding limit on the \(tcH\) coupling is 0.090 at the 95% confidence level. The observed upper limit on the \({t → uH}\) branching ratio is 2.4 × 10\(^{−3}\). KW - High energy physics KW - Flavour changing neutral currents KW - Hadron-Hadron scattering (experiments) KW - Higgs physics KW - Top physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172568 VL - 2017 IS - 10 ER - TY - JOUR T1 - Measurement of \(b\)-hadron pair production with the ATLAS detector in proton-proton collisions at \(\sqrt{s}=8\) TeV JF - Journal of High Energy Physics N2 - A measurement of \(b\)-hadron pair production is presented, based on a data set corresponding to an integrated luminosity of 11.4 fb\(^{−1}\) of proton-proton collisions recorded at \(\sqrt{s}=8\) TeV with the ATLAS detector at the LHC. Events are selected in which a \(b\)-hadron is reconstructed in a decay channel containing \(J/ψ → μμ\), and a second \(b\)-hadron is reconstructed in a decay channel containing a muon. Results are presented in a fiducial volume defined by kinematic requirements on three muons based on those used in the analysis. The fiducial cross section is measured to be 17.7 ± 0.1(stat.) ± 2.0(syst.) nb. A number of normalised differential cross sections are also measured, and compared to predictions from the PHYTHIA8, HERWIG++, MADGRAPH5_AMC@NLO+PYTHIA8 and SHERPA event generators, providing new constraints on heavy flavour production. KW - High energy physics KW - B physics KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172414 VL - 2017 IS - 11 ER - TY - JOUR A1 - Lindert, J. M. A1 - Pozzorini, S. A1 - Boughezal, R. A1 - Campbell, J. M. A1 - Denner, A. A1 - Dittmaier, S. A1 - Gehrmann-De Ridder, A. A1 - Gehrmann, T. A1 - Glover, N. A1 - Huss, A. A1 - Kallweit, S. A1 - Maierhöfer, P. A1 - Mangano, M. L. A1 - Morgan, T. A. A1 - Mück, A. A1 - Petriello, F. A1 - Salam, G. P. A1 - Schönherr, M. A1 - Williams, C. T1 - Precise predictions for \(V+\)jets dark matter backgrounds JF - European Physical Journal C N2 - High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the \({Z(ν\overline{ν})}+\) jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by \(Z(ℓ^+ℓ^−)+\) jet, \(W(ℓν)+\) jet and \(γ+\) jet production, and extrapolating to the \({Z(ν\overline{ν})}+\) jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant \(V+\) jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different \(V+\) jet processes play a key role. The anticipated theoretical uncertainty in the \({Z(ν\overline{ν})}+\) jet background is at the few percent level up to the TeV range. KW - Physics KW - High energy physics KW - High-energy jets KW - Dark matter Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172555 VL - 77 ER - TY - JOUR T1 - Search for pair production of heavy vector-like quarks decaying to high-\(p_T\) \(W\) bosons and \(b\) quarks in the lepton-plus-jets final state in \(pp\) collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - A search is presented for the pair production of heavy vector-like \(T\) quarks, primarily targeting the \(T\) quark decays to a \(W\) boson and a \(b\)-quark. The search is based on 36.1 fb\(^{−1}\) of \(pp\) collisions at \(\sqrt{s}=13\) TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, including at least one \(b\)-tagged jet and a large-radius jet identified as originating from the hadronic decay of a high-momentum \(W\) boson. No significant deviation from the Standard Model expectation is observed in the reconstructed \(T\) mass distribution. The observed 95% confidence level lower limit on the \(T\) mass are 1350 GeV assuming 100% branching ratio to \(Wb\). In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like \(B\) quark decaying to \(Wt\) and other final states. The results are thus reinterpreted to provide a 95% confidence level lower limit on the \(B\) quark mass at 1250 GeV assuming 100% branching ratio to \(Wt\); in the SU(2) singlet scenario, the limit is 1080 GeV. Mass limits on both \(T\) and \(B\) production are also set as a function of the decay branching ratios. The 100% branching ratio limits are found to be applicable to heavy vector-like \(Y\) and \(X\) production that decay to \(Wb\) and \(Wt\), respectively. KW - High energy physics KW - Exotics KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172472 VL - 2017 IS - 141 ER - TY - JOUR T1 - Search for new high-mass phenomena in the dilepton final state using 36 fb\(^{−1}\) of proton-proton collision data at \(\sqrt{s}=13\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb\(^{−1}\) of proton-proton collision data, collected at \(\sqrt{s}=13\) TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 TeV for the E\(_6\)-motivated \(Z^′_χ\). Lower limits on the \({qqℓℓ}\) contact interaction scale are set between 2.4 TeV and 40 TeV, depending on the model. KW - High energy physics KW - Beyond Standard Model KW - Hadron-Hadron scattering (experiments) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172462 VL - 2017 IS - 182 ER - TY - JOUR T1 - Measurement of the \(t\overline{t}γ\) production cross section in proton-proton collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of \(\sqrt{s} = 8\) TeV with 20.2 fb\(^{−1}\) of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum \(p_T\) > 15 GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a \(b\)-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be 139 ± 7 (stat.) ± 17 (syst.) fb, in good agreement with the theoretical prediction at next-to-leading order of 151 ± 24 fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon. KW - High energy physics KW - Hadron-Hadron scattering (experiments) KW - Top physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172399 VL - 2017 IS - 86 ER -