TY - THES A1 - Koch, Rainer T1 - Sensor Fusion for Precise Mapping of Transparent and Specular Reflective Objects T1 - Sensorfusion zur präzisen Kartierung von transparenten und reflektierender Objekten N2 - Almost once a week broadcasts about earthquakes, hurricanes, tsunamis, or forest fires are filling the news. While oneself feels it is hard to watch such news, it is even harder for rescue troops to enter such areas. They need some skills to get a quick overview of the devastated area and find victims. Time is ticking, since the chance for survival shrinks the longer it takes till help is available. To coordinate the teams efficiently, all information needs to be collected at the command center. Therefore, teams investigate the destroyed houses and hollow spaces for victims. Doing so, they never can be sure that the building will not fully collapse while they are inside. Here, rescue robots are welcome helpers, as they are replaceable and make work more secure. Unfortunately, rescue robots are not usable off-the-shelf, yet. There is no doubt, that such a robot has to fulfil essential requirements to successfully accomplish a rescue mission. Apart from the mechanical requirements it has to be able to build a 3D map of the environment. This is essential to navigate through rough terrain and fulfil manipulation tasks (e.g. open doors). To build a map and gather environmental information, robots are equipped with multiple sensors. Since laser scanners produce precise measurements and support a wide scanning range, they are common visual sensors utilized for mapping. Unfortunately, they produce erroneous measurements when scanning transparent (e.g. glass, transparent plastic) or specular reflective objects (e.g. mirror, shiny metal). It is understood that such objects can be everywhere and a pre-manipulation to prevent their influences is impossible. Using additional sensors also bear risks. The problem is that these objects are occasionally visible, based on the incident angle of the laser beam, the surface, and the type of object. Hence, for transparent objects, measurements might result from the object surface or objects behind it. For specular reflective objects, measurements might result from the object surface or a mirrored object. These mirrored objects are illustrated behind the surface which is wrong. To obtain a precise map, the surfaces need to be recognised and mapped reliably. Otherwise, the robot navigates into it and crashes. Further, points behind the surface should be identified and treated based on the object type. Points behind a transparent surface should remain as they represent real objects. In contrast, Points behind a specular reflective surface should be erased. To do so, the object type needs to be classified. Unfortunately, none of the current approaches is capable to fulfil these requirements. Therefore, the following thesis addresses this problem to detect transparent and specular reflective objects and to identify their influences. To give the reader a start up, the first chapters describe: the theoretical background concerning propagation of light; sensor systems applied for range measurements; mapping approaches used in this work; and the state-of-the-art concerning detection and identification of transparent and specular reflective objects. Afterwards, the Reflection-Identification-Approach, which is the core of subject thesis is presented. It describes 2D and a 3D implementation to detect and classify such objects. Both are available as ROS-nodes. In the next chapter, various experiments demonstrate the applicability and reliability of these nodes. It proves that transparent and specular reflective objects can be detected and classified. Therefore, a Pre- and Post-Filter module is required in 2D. In 3D, classification is possible solely with the Pre-Filter. This is due to the higher amount of measurements. An example shows that an updatable mapping module allows the robot navigation to rely on refined maps. Otherwise, two individual maps are build which require a fusion afterwards. Finally, the last chapter summarizes the results and proposes suggestions for future work. N2 - Fast schon wöchentlich füllen Meldungen über Erdbeben, Wirbelstürme, Tsunamis oder Wald-brände die Nachrichten. Es ist hart anzusehen, aber noch viel härter trifft es die Rettungskräfte, welche dort zum Einsatz gerufen werden. Diese müssen gut trainiert sein, um sich schnell einen Überblick verschaffen zu können und um den zerstörten Bereich nach Opfern zu durchsuchen. Zeit ist hier ein seltenes Gut, denn die Überlebenschancen sinken, je länger es dauert bis Hilfe eintrifft. Für eine effektive Teamkoordination werden alle Informationen in der Einsatzzentrale gesammelt. In Trupps wird nach Opfern gesucht. Hierfür werden die zerstörten Gebäude durchsucht und alle Hohlräume inspiziert. Dabei können die Helfer oft nicht darauf vertrauen, dass die Gebäude stabil sind und nicht noch vollständig kollabieren. Hier sind Rettungsroboter eine willkommene Hilfe. Sie sind ersetzbar und können für gefährliche Aufgaben verwendet werden. Dies macht die Arbeit der Rettungstrupps sicherer. Allerdings gibt es solche Roboter noch nicht von der Stange. Sie müssten gewisse Anforderungen erfüllen, dass sie in einem solchen Szenarien einsetztbar sind. Neben Ansprüchen an die Mechanik, müsste eine 3D-Karte des Einsatzgebietes erstellen werden. Diese ist Grundlage für eine erfolgreiche Navigation (durch unebenes Terrain), sowie zur Beeinflussung der Umgebung (z.B. Tür öffnen). Die Umgebungserfassung wird über Sen-soren am Roboter durchgeführt. Heutzutage werden bevorzugt Laserscanner dafür verwendet, da sie präzise Messdaten liefern und über einen großen Messbereich verfügen. Unglücklicherweise werden Messdaten durch transparente (z.B. Glas, transparenter Kunststoff) und reflektierende Objekte (z.B. Spiegel, glänzendes Metall) verfälscht. Eine Vorbehandlung der Umgebung (z.B. abdecken der Flächen), um diese Einflüsse zu verhindern, ist verständlicherweise nicht möglich. Zusätzliche Sensoren zu verwenden birgt ebenfalls Nachteile. Das Problem dieser Objekte liegt darin, dass sie nur teilweise sichtbar sind. Dies ist abhängig vom Einfallwinkel des Laserstrahls auf die Oberfläche und vom Typ des Objektes. Dementsprechend könnnen die Messwerte bei transparenten Flächen von der Oberfläche oder vom Objekten dahinter resultieren. Im Gegensatz dazu können die Messwerte bei reflektierenden Oberflächen von der Oberfläche selbst oder von einem gespiegelten Objekt resultieren. Gespiegelte Objekte werden dabei hinter der reflektierenden Objerfläche dargestellt, was falsch ist. Um eine präzise Kartierung zu erlangen, müssen die Oberflächen zuverlässig eingetragen werden. Andernfalls würde der Roboter in diese navigieren und kollidieren. Weiterhin sollten Punkte hinter der Oberfläche abhängig von der Oberfläche behandelt werden. Bei einer trans- parenten Oberfläche müssen die Punkte in die Karte eingetragen werden, weil sie ein reelles Objekt darstellen. Im Gegensatz dazu, müssen bei einer reflektierenden Oberfläche die Messdaten dahinter gelöscht werden. Dafür ist eine Unterscheidung der Objekte zwingend. Diese Anforderungen erfüllen die momentan verfügbaren Algorithmen jedoch nicht. Aus diesem Grund befasst sich folgende Doktorarbeit mit der Problematik der Erkennung und Identifizierung transparenter und spiegelnder Objekte, sowie deren Einflüsse. Um dem Leser einen Einstieg zu geben, beschreiben die ersten Kapitel: den theoretischen Hindergrund bezüglich des Verhaltens von Licht; Sensorsysteme für die Distanzmessung; Kartierungsalgorithmen, welche in dieser Arbeit verwendet wurden; und den Stand der Technik bezüglich der Erkennung von transparenten und spiegelndend Objekten. Danach wird der Reflection-Identification-Algorithmus, welcher Basis dieser Arbeit ist, präsentiert. Hier wird eine 2D und eine 3D Implementierung beschrieben. Beide sind als ROS-Knoten verfügbar. Das anschließende Kapitel diskutiert Experimente, welche die Anwendbarkeit und Zuverlässigkeit des Algorithmus verifizieren. Für den 2D-Fall ist ein Vor- und ein Nachfilter-Modul notwendig. Nur mittels der Nachfilterung ist eine Klassifizierung der Objekte möglich. Im Gegensatz kann im 3D-Fall die Klassifizierung bereits mit der Vorfilterung erlangt werden. Dies beruht auf der höheren Anzahl an Messdaten. Weiterhin zeigt dieses Kapitel beispielhaft eine Adaptierung des TSD-SLAM Algorithmus, so dass der Roboter auf einer aktualisierten Karte navigieren kann. Dies erspart die Erstellung von zwei unabhängigen Karten und eine anschließende Fusionierung. Im letzten Kapitel werden die Ergebnisse der Arbeit zusammengefasst und ein Ausblick mit Anregungen zur Weiterarbeit gegeben. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 16 KW - laserscanner KW - mapping KW - robotic KW - laser scanner KW - sensor fusion KW - transparent KW - specular reflective Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163462 SN - 978-3-945459-25-6 ER - TY - THES A1 - Becker, Martin T1 - Understanding Human Navigation using Bayesian Hypothesis Comparison T1 - Verstehen menschlichen Navigationsverhaltens mit hypothesengetriebenen Bayes'schen Methoden N2 - Understanding human navigation behavior has implications for a wide range of application scenarios. For example, insights into geo-spatial navigation in urban areas can impact city planning or public transport. Similarly, knowledge about navigation on the web can help to improve web site structures or service experience. In this work, we focus on a hypothesis-driven approach to address the task of understanding human navigation: We aim to formulate and compare ideas — for example stemming from existing theory, literature, intuition, or previous experiments — based on a given set of navigational observations. For example, we may compare whether tourists exploring a city walk “short distances” before taking their next photo vs. they tend to "travel long distances between points of interest", or whether users browsing Wikipedia "navigate semantically" vs. "click randomly". For this, the Bayesian method HypTrails has recently been proposed. However, while HypTrails is a straightforward and flexible approach, several major challenges remain: i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving user groups such as tourists and locals is not possible), ii) HypTrails does not support the user in conceiving novel hypotheses when confronted with a large set of possibly relevant background information or influence factors, e.g., points of interest, popularity of locations, time of the day, or user properties, and finally iii) formulating hypotheses can be technically challenging depending on the application scenario (e.g., due to continuous observations or temporal constraints). In this thesis, we address these limitations by introducing various novel methods and tools and explore a wide range of case studies. In particular, our main contributions are the methods MixedTrails and SubTrails which specifically address the first two limitations: MixedTrails is an approach for hypothesis comparison that extends the previously proposed HypTrails method to allow formulating and comparing heterogeneous hypotheses (e.g., incorporating differently behaving user groups). SubTrails is a method that supports hypothesis conception by automatically discovering interpretable subgroups with exceptional navigation behavior. In addition, our methodological contributions also include several tools consisting of a distributed implementation of HypTrails, a web application for visualizing geo-spatial human navigation in the context of background information, as well as a system for collecting, analyzing, and visualizing mobile participatory sensing data. Furthermore, we conduct case studies in many application domains, which encompass — among others — geo-spatial navigation based on photos from the photo-sharing platform Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing behavior on a commercial crowdsourcing platform. In the process, we develop approaches to cope with application specific subtleties (like continuous observations and temporal constraints). The corresponding studies illustrate the variety of domains and facets in which navigation behavior can be studied and, thus, showcase the expressiveness, applicability, and flexibility of our methods. Using these methods, we present new aspects of navigational phenomena which ultimately help to better understand the multi-faceted characteristics of human navigation behavior. N2 - Menschliches Navigationsverhalten zu verstehen, kann in einer Reihe von Anwendungsgebieten große Fortschritte bringen. Zum Beispiel können Einblicke in räumliche Navigation, wie etwa in Innenstädten, dabei helfen Infrastrukturen und öffentliche Verkehrsmittel besser abzustimmen. Genauso kann Wissen über das Navigationsverhalten von Benutzern im Internet, Entwickler dabei unterstützen Webseiten besser zu strukturieren oder generell die Benutzererfahrung zu verbessern. In dieser Arbeit konzentrieren wir uns auf einen Hypothesen-getriebenen Ansatz, um menschliches Navigationsverhalten zu verstehen. Das heißt, wir formulieren und vergleichen Hypothesen basierend auf beobachteten Navigationspfaden. Diese Hypothesen basieren zumeist auf existierenden Theorien, Literatur, vorherigen Experimenten oder Intuition. Beispielsweise kann es interessant sein zu vergleichen, ob Touristen, die eine Stadt erkunden, eher zu nahegelegenen Sehenswürdigkeiten laufen, als vornehmlich große Strecken zurückzulegen. Weiterhin kann man in Online-Szenarien vergleichen, ob Benutzer zum Beispiel auf Wikipedia eher semantisch navigieren, als zufällig Artikel anzusurfen. Für diese Szenarien wurde HypTrails entwickelt, ein Bayes’scher Ansatz zum Vergleich von Navigationshypothesen. Doch obwohl HypTrails eine einfach zu benutzende und sehr flexible Methode darstellt, hat es einige deutliche Schwachstellen: Zum einen kann HypTrails keine heterogenen Prozesse modellieren (z.B., um das Verhalten von ver- schiedenen Nutzergruppen, wie etwa von Touristen und Einheimischen, zu unterscheiden). Außerdem bietet HypTrails dem Benutzer keine Unterstützung bei der Entwicklung neuer Hypothesen. Dies stellt vor allem in Kombination mit großen Mengen an Hintergrundinformationen und anderen Einflussgrößen (z.B., Sehenswürdigkeiten, Beliebtheit von Orten, Tageszeiten, oder verschieden Benutzereigenschaften) eine große Herausforderung dar. Außerdem kann sich das Formulieren von adäquaten Hypothesen abhängig vom Anwendungsszenario als schwierig erweisen (z.B. aufgrund von kontinuierlichen, räumlichen Koordinaten oder zeitlichen Nebenbedingungen). In dieser Arbeit setzen wir an eben jenen Problemstellungen an. Unsere Hauptbeiträge bestehen dabei aus den Ansätzen MixedTrails und SubTrails, die vor allem die ersten beiden genannten Schwachstellen adressieren: MixedTrails stellt einen Ansatz zum Vergleich von Hypothesen dar, der auf HypTrails basiert, es aber ermöglicht heterogene Hypothesen zu formulieren und zu vergleichen (z.B., bei Benutzergruppen mit unterschiedlichem Bewegungsverhalten). Während SubTrails eine Methode darstellt, die das Entwickeln neuer Hypothesen unterstützt, indem es die automatische Entdeckung von interpretierbaren Subgruppen mit außergewöhnlichen Bewegungscharakteristiken ermöglicht. Weiterhin, stellen wir eine verteitle und hochparallele Implementierung von HypTrails, ein Werkzeug zur Visualisierung von räumlicher Navigation zusammen mit Hintergrundinformationen, sowie ein System zur Sammlung, Analyse und Visualisierung von Daten aus dem Bereich des Participatory Sensing vor. Schließlich, führen wir mehrere Studien in verschiedenen Anwendungsbereichen durch. Wir untersuchen etwa räumliche Navigation basierend auf Photos der Onlineplattform Flickr, Browsing-Verhalten der Nutzer auf dem Verschlagwortungssystem BibSonomy, und das Arbeitsverhalten von Nutzern einer kommerziellen Crowdsourcing-Plattform. Dabei entwickeln wir mehrere Ansätze, um mit den Eigenheiten der spezifischen Szenarien umgehen zu können (wie etwa kontinuierliche räumliche Koordinaten oder zeitliche Nebenbedingungen). Die Ergebnisse zeigen die Vielzahl von Anwendungsgebieten und Facetten, in denen Navigationsverhalten analysiert werden kann, und illustrieren so die Ausdrucksstärke, vielseitige Anwendbarkeit und Flexibilität unserer Methoden. Gleichzeitig, geben wir neue Einblicke in verschiedene Navigationsprozesse und ermöglichen so einen wichtigen Schritt hin zum Verständnis der vielfältigen Ebenen menschlichen Navigationsverhaltens. KW - Bayesian model comparison KW - Bayes-Verfahren KW - Mensch KW - Raumverhalten KW - Hypothesis comparison KW - Model comparison KW - Web navigation KW - Geo-spatial behavior KW - Navigation analysis KW - Räumliches Verhalten KW - Data Science KW - Human behavior KW - Bayes analysis KW - Mobility KW - Mobilität KW - Statistische Hypothese KW - Spatial behavior KW - Social Media Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163522 ER - TY - THES A1 - Baier, Pablo A. T1 - Simulator for Minimally Invasive Vascular Interventions: Hardware and Software T1 - VR-Simulation für das Training von Herzkathetereingriffen: Hard- und Softwarelösung N2 - A complete simulation system is proposed that can be used as an educational tool by physicians in training basic skills of Minimally Invasive Vascular Interventions. In the first part, a surface model is developed to assemble arteries having a planar segmentation. It is based on Sweep Surfaces and can be extended to T- and Y-like bifurcations. A continuous force vector field is described, representing the interaction between the catheter and the surface. The computation time of the force field is almost unaffected when the resolution of the artery is increased. The mechanical properties of arteries play an essential role in the study of the circulatory system dynamics, which has been becoming increasingly important in the treatment of cardiovascular diseases. In Virtual Reality Simulators, it is crucial to have a tissue model that responds in real time. In this work, the arteries are discretized by a two dimensional mesh and the nodes are connected by three kinds of linear springs. Three tissue layers (Intima, Media, Adventitia) are considered and, starting from the stretch-energy density, some of the elasticity tensor components are calculated. The physical model linearizes and homogenizes the material response, but it still contemplates the geometric nonlinearity. In general, if the arterial stretch varies by 1% or less, then the agreement between the linear and nonlinear models is trustworthy. In the last part, the physical model of the wire proposed by Konings is improved. As a result, a simpler and more stable method is obtained to calculate the equilibrium configuration of the wire. In addition, a geometrical method is developed to perform relaxations. It is particularly useful when the wire is hindered in the physical method because of the boundary conditions. The physical and the geometrical methods are merged, resulting in efficient relaxations. Tests show that the shape of the virtual wire agrees with the experiment. The proposed algorithm allows real-time executions and the hardware to assemble the simulator has a low cost. N2 - Es wird ein vollständiges Simulationssystem entwickelt, das von Ärzten als Lehrmittel zur Ausbildung grundlegender Fertigkeiten bei Herzkathetereingriffen eingesetzt werden kann. Im ersten Teil wird ein Oberflächenmodell zur Erstellung von Arterien mit planarer Segmentierung entwickelt. Im zweiten Teil werden die Arterien durch ein zweidimensionales Netz diskretisiert, die Knoten werden durch drei Arten linearer Federn verbunden und ausgehend von einer Dehnungsenergie-Dichte-Funktion werden einige Komponenten des Elastizitätstensors berechnet. Im letzten Teil wird das von anderen Autoren vorgeschlagene physikalische Modell des Drahtes verbessert und eine neue geometrische Methode entwickelt. Der vorgeschlagene Algorithmus ermöglicht Echtzeit-Ausführungen. Die Hardware des Simulators hat geringe Herstellungskosten. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 15 KW - Computersimulation KW - Simulator KW - Arterie KW - Elastizitätstensor KW - Herzkatheter KW - Minimally invasive vascular intervention KW - Wire relaxation KW - Artery KW - Elasticity tensor KW - Stiffness KW - educational tool KW - Elastizitätstensor KW - Herzkathetereingriff KW - Software KW - Hardware Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161190 SN - 978-3-945459-22-5 ER - TY - THES A1 - Mühlberger, Clemens T1 - Design of a Self-Organizing MAC Protocol for Dynamic Multi-Hop Topologies T1 - Entwicklung eines selbst-organisierenden MAC Protokolls für dynamische Mulit-Hop Topologien N2 - Biologically inspired self-organization methods can help to manage the access control to the shared communication medium of Wireless Sensor Networks. One lightweight approach is the primitive of desynchronization, which relies on the periodic transmission of short control messages – similar to the periodical pulses of oscillators. This primitive of desynchronization has already been successfully implemented as MAC protocol for single-hop topologies. Moreover, there are also some concepts of such a protocol formulti-hop topologies available. However, the existing implementations may handle just a certain class of multi-hop topologies or are not robust against topology dynamics. In addition to the sophisticated access control of the sensor nodes of a Wireless Sensor Network in arbitrary multi-hop topologies, the communication protocol has to be lightweight, applicable, and scalable. These characteristics are of particular interest for distributed and randomly deployed networks (e.g., by dropping nodes off an airplane). In this work we present the development of a self-organizing MAC protocol for dynamic multi-hop topologies. This implies the evaluation of related work, the conception of our new communication protocol based on the primitive of desynchronization as well as its implementation for sensor nodes. As a matter of course, we also analyze our realization with regard to our specific requirements. This analysis is based on several (simulative as well as real-world) scenarios. Since we are mainly interested in the convergence behavior of our protocol, we do not focus on the "classical" network issues, like routing behavior or data rate, within this work. Nevertheless, for this purpose we make use of several real-world testbeds, but also of our self-developed simulation framework. According to the results of our evaluation phase, our self-organizing MAC protocol for WSNs, which is based on the primitive of desynchronization, meets all our demands. In fact, our communication protocol operates in arbitrary multi-hop topologies and copes well with topology dynamics. In this regard, our protocol is the first and only MAC protocol to the best of our knowledge. Moreover, due to its periodic transmission scheme, it may be an appropriate starting base for additional network services, like time synchronization or routing. N2 - Biologisch inspirierte, selbst-organisierende Methoden können dabei helfen, die Zugriffskontrolle drahtloser Sensornetze auf das gemeinsame Kommunikationsmedium zu regeln. Ein leichtgewichtiger Ansatz ist das Primitiv der Desynchronisation, das auf einer periodischen Übertragung kurzer Kontrollnachrichten beruht – ähnlich den periodischen Impulsen eines Oszillators. Dieses Primitiv der Desynchronisation wurde bereits erfolgreich als MAC Protokoll für Single-Hop Topologien implementiert. Außerdem existieren auch einige Multi-Hop Konzepte dieser Protokolle. Allerdings können die verfügbaren Implementierungen nur eine bestimmte Klasse von Multi-Hop Topologien bedienen oder sie sind nicht robust genug gegenüber Veränderungen der Netzwerktopologie. Zusätzlich zu dieser ausgeklügelten Zugriffskontrolle der Sensorknoten eines drahtlosen Sensornetzes in beliebigen Multi-Hop Topologien muss das Kommunikationsprotokoll leichtgewichtig, effizient anwendbar und skalierbar sein. Diese Eigenschaften sind insbesondere für verteilte und zufällig (z.B. durch den Abwurf von Sensorknoten aus einem Flugzeug) aufgebaute Netzwerke von Interesse. In dieser Arbeit präsentieren wir die Entwicklung eines selbst-organisierenden MAC Protokolls für dynamische Multi-Hop Topologien. Dies beinhaltet die Auswertung damit verbundener Arbeiten, der Konzeption unseres neuen, auf dem Primitiv der Desynchronisation basierenden Kommunikationsprotokolls sowie dessen Umsetzung für Sensorknoten. Selbstverständlich untersuchen wir unsere Realisierung hinsichtlich unserer spezifischen Anforderungen. Diese Analyse basiert auf verschiedenen (simulativen, wie auch aus echter Hardware bestehenden) Szenarien. Da wir vornehmlich am Konvergenzverhalten unseres Protokolls interessiert sind, legen wir unser Augenmerk in dieser Arbeit nicht auf die „klassischen“ Netzwerkthemen, wie Routing-Verhalten oder Datenrate. Nichtsdestotrotz nutzen wir hierfür verschiedene realitätsnahe Testumgebungen, aber auch unsere selbstentwickelte Simulationsumgebung. Gemäß den Ergebnissen unserer Evaluationsphase erfüllt unser auf dem Primitiv der Desynchronisation basierendes, selbst-organisierendes MAC Protokoll für drahtlose Sensornetze all unsere Anforderungen. Tatsächlich funktioniert unser Kommunikationsprotokoll in beliebigen Multi-Hop Topologien und kann zudem gut mit Veränderungen der Topologie umgehen. In dieser Hinsicht ist – nach unserem besten Wissen – unser Protokoll das erste und einzige MAC Protokoll. Außerdem bietet sich unser Kommunikationsprotokoll aufgrund seines periodischen Übertragungsschemas als geeigneter Ausgangspunkt für weitere Netzwerkdienste, wie Zeitsynchronisation oder Routing, an. KW - Desynchronization KW - Desynchronisation KW - Multi-Hop Topology KW - Multi-Hop Topologie KW - MAC Protocol KW - Drahtloses Sensornetz KW - Internet der Dinge KW - Kommunikationsprotokoll KW - Netzwerktopologie KW - Selbstorganisation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158788 ER - TY - THES A1 - Borrmann, Dorit T1 - Multi-modal 3D mapping - Combining 3D point clouds with thermal and color information T1 - Multi-modale 3D-Kartierung - Kombination von 3D-Punktwolken mit Thermo- und Farbinformation N2 - Imagine a technology that automatically creates a full 3D thermal model of an environment and detects temperature peaks in it. For better orientation in the model it is enhanced with color information. The current state of the art for analyzing temperature related issues is thermal imaging. It is relevant for energy efficiency but also for securing important infrastructure such as power supplies and temperature regulation systems. Monitoring and analysis of the data for a large building is tedious as stable conditions need to be guaranteed for several hours and detailed notes about the pose and the environment conditions for each image must be taken. For some applications repeated measurements are necessary to monitor changes over time. The analysis of the scene is only possible through expertise and experience. This thesis proposes a robotic system that creates a full 3D model of the environment with color and thermal information by combining thermal imaging with the technology of terrestrial laser scanning. The addition of a color camera facilitates the interpretation of the data and allows for other application areas. The data from all sensors collected at different positions is joined in one common reference frame using calibration and scan matching. The first part of the thesis deals with 3D point cloud processing with the emphasis on accessing point cloud data efficiently, detecting planar structures in the data and registering multiple point clouds into one common coordinate system. The second part covers the autonomous exploration and data acquisition with a mobile robot with the objective to minimize the unseen area in 3D space. Furthermore, the combination of different modalities, color images, thermal images and point cloud data through calibration is elaborated. The last part presents applications for the the collected data. Among these are methods to detect the structure of building interiors for reconstruction purposes and subsequent detection and classification of windows. A system to project the gathered thermal information back into the scene is presented as well as methods to improve the color information and to join separately acquired point clouds and photo series. A full multi-modal 3D model contains all the relevant geometric information about the recorded scene and enables an expert to fully analyze it off-site. The technology clears the path for automatically detecting points of interest thereby helping the expert to analyze the heat flow as well as localize and identify heat leaks. The concept is modular and neither limited to achieving energy efficiency nor restricted to the use in combination with a mobile platform. It also finds its application in fields such as archaeology and geology and can be extended by further sensors. N2 - Man stelle sich eine Technologie vor, die automatisch ein vollständiges 3D-Thermographiemodell einer Umgebung generiert und Temperaturspitzen darin erkennt. Zur besseren Orientierung innerhalb des Modells ist dieses mit Farbinformationen erweitert. In der Analyse temperaturrelevanter Fragestellungen sind Thermalbilder der Stand der Technik. Darunter fallen Energieeffizienz und die Sicherung wichtiger Infrastruktur, wie Energieversorgung und Systeme zur Temperaturregulierung. Die Überwachung und anschließende Analyse der Daten eines großen Gebäudes ist aufwändig, da über mehrere Stunden stabile Bedingungen garantiert und detaillierte Aufzeichnungen über die Aufnahmeposen und die Umgebungsverhältnisse für jedes Wärmebild erstellt werden müssen. Einige Anwendungen erfordern wiederholte Messungen, um Veränderungen über die Zeit zu beobachten. Eine Analyse der Szene ist nur mit Erfahrung und Expertise möglich. Diese Arbeit stellt ein Robotersystem vor, das durch Kombination von Thermographie mit terrestrischem Laserscanning ein vollständiges 3D Modell der Umgebung mit Farb- und Temperaturinformationen erstellt. Die ergänzende Farbkamera vereinfacht die Interpretation der Daten und eröffnet weitere Anwendungsfelder. Die an unterschiedlichen Positionen aufgenommenen Daten aller Sensoren werden durch Kalibrierung und Scanmatching in einem gemeinsamen Bezugssystem zusammengefügt. Der erste Teil der Arbeit behandelt 3D-Punktwolkenverarbeitung mit Schwerpunkt auf effizientem Punktzugriff, Erkennung planarer Strukturen und Registrierung mehrerer Punktwolken in einem gemeinsamen Koordinatensystem. Der zweite Teil beschreibt die autonome Erkundung und Datenakquise mit einem mobilen Roboter, mit dem Ziel, die bisher nicht erfassten Bereiche im 3D-Raum zu minimieren. Des Weiteren wird die Kombination verschiedener Modalitäten, Farbbilder, Thermalbilder und Punktwolken durch Kalibrierung ausgearbeitet. Den abschließenden Teil stellen Anwendungsszenarien für die gesammelten Daten dar, darunter Methoden zur Erkennung der Innenraumstruktur für die Rekonstruktion von Gebäuden und der anschließenden Erkennung und Klassifizierung von Fenstern. Ein System zur Rückprojektion der gesammelten Thermalinformation in die Umgebung wird ebenso vorgestellt wie Methoden zur Verbesserung der Farbinformationen und zum Zusammenfügen separat aufgenommener Punktwolken und Fotoreihen. Ein vollständiges multi-modales 3D Modell enthält alle relevanten geometrischen Informationen der aufgenommenen Szene und ermöglicht einem Experten, diese standortunabhängig zu analysieren. Diese Technologie ebnet den Weg für die automatische Erkennung relevanter Bereiche und für die Analyse des Wärmeflusses und vereinfacht somit die Lokalisierung und Identifikation von Wärmelecks für den Experten. Das vorgestellte modulare Konzept ist weder auf den Anwendungsfall Energieeffizienz beschränkt noch auf die Verwendung einer mobilen Plattform angewiesen. Es ist beispielsweise auch in Feldern wie der Archäologie und Geologie einsetzbar und kann durch zusätzliche Sensoren erweitert werden. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 14 KW - Punktwolke KW - Lidar KW - Thermografie KW - Robotik KW - 3D point cloud KW - Laser scanning KW - Robotics KW - 3D thermal mapping KW - Registration Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157085 SN - 978-3-945459-20-1 SN - 1868-7474 SN - 1868-7466 ER -