TY - THES A1 - Aumann, Ralf T1 - Vorkommen und Expression des opcA Gens in Meningokokkenstämmen von Erkrankten und asymptomatischen Trägern T1 - Prevalence and expression of the opcA gene in meningococci from invasive and carrier strains N2 - Das Opc-Protein ist ein Außenmembranprotein von Meningokokken, das über extrazelluläre Matrixproteine mit Integrinen der Wirtszelle interagiert. Opc ist in Menschen immunogen und induziert bakterizide Antikörper. Das Opc-Protein wurde daher als aussichtsreicher Impfstoff-Kandidat angesehen, da es außerdem relativ gut konserviert ist. Allerdings wird das Opc-Protein nicht von allen Meningokokkenstämmen exprimiert. Einerseits fehlt das opc-Gen in einigen klonalen Komplexen (z.B. ST-8, ST-11, ST-53), andererseits ist die Opc-Expression nicht konstitutiv wegen einer phasenvariablen Transkription, die auf einem Poly-Cytidin-Bereich im Promotor des opc-Gens beruht. In dieser Arbeit wurde die Präsenz des opc-Gens und die Opc-Expression in zwei großen Sammlungen deutscher Meningokokkenisolate von invasiven Erkrankungen (n=1141) und gesunden Trägern (n=792) untersucht. Das opc-Gen war bei 71% der invasiven und 77% der Trägerstämme nachweisbar. Der größte Teil der opc-Gen negativen Stämme gehörte zu den klonalen Komplexen ST-8, ST-11, ST-213, ST-231, ST-334 und ST-53. Der Anteil opc-positiver Stämme, die Opc in vitro exprimieren, war bei den invasiven Stämmen kleiner als bei den Trägerstämmen (13% vs. 29%, p<0,001, Chi-square-Test). Der größere Anteil Opc-exprimierender Trägerstämme ist u.a. am ehesten mit der Überrepräsentation von wenig pathogenen klonalen Komplexen (ST-23, ST-35, ST-198) mit einer hohen Opc-Expressionsrate zu erklären. 24 von den 176 invasiven Stämmen mit einer Anzahl von 11 - 14 Cs in der Promotor-Region, die die Opc-Expression begünstigt, zeigten weder im ELISA noch im Westernblot eine Opc-Expression. Bei 14 dieser 24 Stämme wurde als Ursache ein phasenvariabler, intragenischer Poly-Adenin-Bereich identifiziert, der zu einer Leserasterverschiebung führte. Die Vermutung mehrerer Autoren, dass die Opc-Expression mit dem klinischen Bild der Meningitis verknüpft ist, konnte mit der hier genutzten großen Stammsammlung nicht bestätigt werden. Invasive Stämme, die das Opc-Protein exprimierten, wurden genauso häufig von Patienten mit dem klinischen Bild der Meningitis isoliert wie Stämme, die das Opc-Protein nicht exprimierten (46% vs. 47%, Chi-square-Test: p<0,9). Allerdings gibt es eine starke Assoziation der Gegenwart des opc-Gens mit dem klinischen Merkmal Meningitis. Dieser Befund gibt Anlass zu der Hypothese, dass in vitro und in vivo Expression von Opc sich unterscheiden. Zusammenfassend lässt sich festhalten, dass das Opc-Protein nur in 19,8% aller Isolate (invasive und Trägerstämme zusammengenommen) exprimiert wurde. Es zeigte sich eine Tendenz zu häufigerer Opc-Expression in apathogenen Trägerisolaten. Das Vorhandensein des opc-Gens, nicht aber die in vitro Expression konnten mit dem klinischen Merkmal Meningitis assoziiert werden. Zusätzlich wurde ein weiterer Mechanismus der intragenischen Phasenvariation beschrieben. N2 - Presence of opc was associated with meningitis, mostly because ST-11/ST-8 cc meningococci with low meningitis rates were consistently opc negative. On the other hand, lack of opc did not exclude meningitis. Opc was expressed in only 13% of all invasive isolates. In vitro Opc expression was not associated with meningitis. Limitation: Definite conclusion about expression in vivo is not possible with cultured isolates. Evidence for intragenic opc phase-variation was provided. KW - Neisseria meningitidis KW - opc KW - Medizin KW - Mikrobiologie KW - Meningitis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157278 ER - TY - THES A1 - Cholewa, Ute T1 - Procalcitonin in der Frühdiagnose der bakteriellen Meningitis T1 - Procalcitonin in the early diagnosis of bacterial meningitis N2 - Die Prognose einer lebensbedrohlichen Meningitis wird bestimmt durch möglichst erregergerechte und möglichst frühzeitige Therapie. Dabei spielt die Unterscheidung zwischen eitriger Meningitis durch typische oder schwer anzüchtbare Bakterien und abakterieller Meningitis eine Rolle, um die potentiellen Komplikationen unnötiger Polypragmasie zu vermeiden. Daher sind möglichst einfach und rasch zu bestimmende Laborparameter zur Untersuchung wünschenswert. Als relativ neuer Parameter zur Differenzierung bakterieller von nicht bakteriellen Infekten ist Procalcitonin (PCT) eingeführt, dessen Bestimmung jetzt auch am Krankenbett möglich ist. PCT hat bisher seine Nützlichkeit v. a. in der Sepsiserkennung und –therapie gezeigt. Erste Fragestellung dieser retrospektiven Analyse von Meningoencephalitispatienten war, ob bei Erwachsenen durch Messung des PCT-Spiegels eine Differenzierung zwischen bakterieller oder viraler Genese gelingt, und ob der Bedsidetest so zuverlässig ist wie der aufwändigere LUMItest®. Dazu wurden retrospektiv die Daten von 141 Patienten erhoben, die 1992-2001 an der Neurologischen Universitätsklinik Würzburg mit gesicherter Meningitis behandelt wurden, von denen sowohl Akten als auch Liquor- und Serumasservate vorlagen, in denen die PCT-Messungen durchgeführt wurden. In den Untersuchungen von Schwarz et al. [102], Gendrel et al. [100] und Jereb et al. [104] wurde bei einem PCT-Grenzwert von 0,5 ng/ml eine Spezifität von 100 % für die Differenzierung bakterielle verusus abakterielle Meninigitis gefunden. Dagegen wären bei gleicher Messmethodik im hier vorliegendem größeren Patientengut 35 % der gesicherten bakteriellen Meningitiden bei einem „cut-off“ von 0,5 ng/ml nicht als solche erkannt worden. 5 % der nicht-bakteriellen Meningitiden wären mittels PCT-Messung als bakteriell eingestuft worden. Im hier untersuchten Patientenkollektiv hatte PCT als diagnostischer Parameter für diese Fragestellung bei einem Grenzwert von 0,5 ng/ml eine Sensitivität von 65 % und eine Spezifität von 96 %. Eine 100 % Spezifität wäre in unserer Untersuchung bei einem „cut-off“ von 1 ng/ml erreicht worden. Diese Grenze wird jedoch auf dem Schnelltest nicht angegeben. Es stellte sich hier heraus, dass der PCT®-Q Schnelltest im Bereich > 0,5 ng/ml bzw. <0,5 ng/ml dem LUMItest® vergleichbare Ergebnisse lieferte. Das bedeutet zwar, dass alle bakteriellen Meningitiden durch typische Erreger (Meningokokken und Pneumokokken) rasch und sicher bettseitig mittels PCT-Schnelltest hätten identifiziert werden können. Aber ein niedriger PCT-Wert schloss eine bakterielle Meningitis, insbesondere eine durch „atypische Erreger“ wie Listerien und Mycobakterien, nicht sicher aus. Denkbare Störgrößen für das vorliegende Ergebnis sind Antibiotikagabe und Immunschwäche. Ein statistisch auffallender Einfluss einer Antibiotikatherapie auf den PCT-Spiegel konnte in unserem Patientengut nicht festgestellt werden. Für die wenigen Fälle mit anzunehmender verminderter Immunleistung ließ sich keine Regel bezüglich der PCT-Reaktion ableiten. Damit erscheint der Schnelltest im klinischen Alltag für eine 100% spezifische, sichere Unterscheidung bakterielle vs. nicht-bakterielle Meniongoencephalitis nicht geeignet; das bisher größte untersuchte Kollektiv hat den in der Literatur angegebenen „cut-off“ von 0,5 ng/ml für eine sichere Differenzierung nicht bestätigen können. Die zweite Frage ist, ob die Messung des PCT den traditionellen Parametern Liquorzellzahl, Liquoreiweiß, Liquor/Serum-Glucosequotient, BSG, Serumleukozytenzahl oder CRP bezüglich Spezifität und Sensitivität in der Differentialdiagnose überlegen ist. Es zeigte sich, dass CRP bei einem Grenzwert von 5-6 mg/dl mit einer Sensitivität und Spezifität von 95 % und 98 % die sicherste Differenzierung zwischen bakterieller und abakterieller Meningitis bei diesem Patientenkollektiv leistete. Mithin kann die PCT-Bestimmung am Krankenbett in der Akutaufnahmesituation eines Patienten mit Meningoencephalitis bei Werten > 10 ng/ml zwar treffsicher die Diagnose einer Meningokokken- oder Pneumokokken-Infektion stützen. Für jede darüber hinaus gehende Schlussfolgerung erscheint die PCT-Messung aber entbehrlich wegen mangelhafter Spezifität und Sensitivität und v.a. der Unterlegenheit gegenüber traditionell herangezogenen Laborparametern, insbesondere CRP. Folglich erwies sich die Bestimmung des PCT bei akuter Meningoencephalitis als entbehrlich. N2 - Objectives: Can serum-Procalcitonin (PCT) distinguish more exactly bacterial from abacterial meningitis/meningoencephalitis than the common parameters (like cerebrospinal fluid leukocyte count, cerebrospinal fluid protein, serum/cerebrospinal fluid glucose quotient, erythrocyte sedimentation rate, white blood cell count and C-reactive protein)? Design: Retrospective case series Patients: A total of 141 patients (56 woman, 87 men) Intervention: Blood samples Main results: By taking a cut-off-level of 0,5 ng/ml for PCT (as provided by the producer), this parameter shows a sensitivity of 65 % and specificity of 96%. It turned out that CRP did the safest distinction between bacterial and abacterial meningitis by choosing a cut-off-level of 5-6 mg/dl with a sensitivity and specificity of 95% and 98% at this patient collective. Conclusion: In this study PCT proved to be a dispensable parameter for the early diagnosis of the bacterial meningitis. KW - Procalcitonin KW - Meningitis KW - Meningoencephalitis KW - procalcitonin KW - meningitis KW - meningoencephalitis Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16490 ER - TY - THES A1 - Förtsch, Christina T1 - Pneumolysin: the state of pore-formation in context to cell trafficking and inflammatory responses of astrocytes T1 - Pneumolysin: Einfluss der Porenbildung auf zelluläre Transportprozesse und inflammatorische Antworten in Astrozyten N2 - Pneumolysin, a protein toxin, represents one of the major virulence factors of Streptococcus pneumoniae. This pathogen causes bacterial meningitis with especially high disease rates in young children, elderly people and immunosuppressed patients. The protein toxin belongs to the family of cholesterol-dependent cytolysins, which require membrane cholesterol in order to bind and to be activated. Upon activation, monomers assemble in a circle and undergo conformational change. This conformational change leads to the formation of a pore, which eventually leads to cell lysis. This knowledge was obtained by studies that used a higher concentration compared to the concentration of pneumolysin found in the cerebrospinal fluid of meningitis patients. Thus, a much lower concentration of pneumolysin was used in this work in order to investigate effects of this toxin on primary mouse astrocytes. Previously, a small GTPase activation, possibly leading to cytoskeletal changes, was found in a human neuroblastoma cell line. This led to the hypothesis that pneumolysin can lead to similar cytoskeletal changes in primary cells. The aim of this work was to investigate and characterise the effects of pneumolysin on primary mouse astrocytes in terms of a possible pore formation, cellular trafficking and immunological responses. Firstly, the importance of pore-formation on cytoskeletal changes was to be investigated. In order to tackle this question, wild-type pneumolysin and two mutant variants were used. One variant was generated by exchanging one amino acid in the cholesterol recognising region, the second variant was generated by deleting two amino acids in a protein domain that is essential for oligomerisation. These variants should be incapable of forming a pore and were compared to the wild-type in terms of lytic capacities, membrane binding, membrane depolarisation, pore-formation in artificial membranes (planar lipid bilayer) and effects on the cytoskeleton. These investigations resulted in the finding that the pore-formation is required for inducing cell lysis, membrane depolarisation and cytoskeletal changes in astrocytes. The variants were not able to form a pore in planar lipid bilayer and did not cause cell lysis and membrane depolarisation. However, they bound to the cell membrane to the same extent as the wild-type toxin. Thus, the pore-formation, but not the membrane binding was the cause for these changes. Secondly, the effect of pneumolysin on cellular trafficking was investigated. Here, the variants showed no effect, but the wild-type led to an increase in overall endocytotic events and was itself internalised into the cell. In order to characterise a possible mechanism for internalisation, a GFP-tagged version of pneumolysin was used. Several fluorescence-labelled markers for different endocytotic pathways were used in a co-staining approach with pneumolysin. Furthermore, inhibitors for two key-players in classical endocytotic pathways, dynamin and myosin II, were used in order to investigate classical endocytotic pathways and their possible involvement in toxin internalisation. The second finding of this work is that pneumolysin is taken up into the cell via dynamin- and caveolin-independent pinocytosis, which could transfer the toxin to caveosomes. From there, the fate of the toxin remains unknown. Additionally, pneumolysin leads to an overall increase in endocytotic events. This observation led to the third aim of this work. If the toxin increases the overall rate of endocytosis, the question arises whether toxin internalisation favours bacterial tissue penetration of the host or whether it serves as a defence mechanism of the cell in order to degrade the protein. Thus, several proinflammatory cytokines were investigated, as previous studies describe an effect of pneumolysin on cytokine production. Surprisingly, only interleukin 6-production was increased after toxin-treatment and no effect of endocytotic inhibitors on the interleukin 6-production was observed. The conclusion from this finding is that pneumolysin leads to an increase of interleukin 6, which would not depend on the endocytotic uptake of pneumolysin. The production of interleukin 6 would enhance the production of acute phase proteins, T-cell activation, growth and differentiation. On the one hand, this activation could serve pathogen clearance from infected tissue. On the other hand, the production of interleukin 6 could promote a further penetration of pathogen into host tissue. This question should be further investigated. N2 - Das Protein-Toxin Pneumolysin ist einer der entscheidenden Virulenzfaktoren von Streptococcus pneumoniae. Dieses Protein-Toxin gehört zur Familie der cholesterinabhängigen Zytolysine, die Membrancholesterol für ihre Aktivierung und Bindung benötigen. Nach der Membranbindung ordnen sich die Toxinmonomere kreisförmig an und ändern ihre Konformation, wodurch eine Pore entsteht, die dann zu einer Lyse der Zelle führt. Vor kurzem wurde nach Pneumolysinbehandlung in einer humanen Neuroblastomzelllinie eine Aktivierung kleiner GTPasen gefunden, die für zytoskelettale Veränderungen entscheidend sind (z.B. Zellbewegungen). Deshalb wurde die Hypothese aufgestellt, dass Pneumolysin diese zytoskelettalen Veränderungen auch in primären neuronalen Zellen auslösen könnte. Das Ziel dieser Arbeit war, die Effekte von Pneumolysin auf primäre Mausastrozyten im Hinblick auf Porenbildung, zelluläre Transportprozesse und immunologische Antworten zu untersuchen. Im ersten Teil wird die Bedeutung der Porenbildung auf zytoskelettale Veränderungen untersucht. Hierbei wurden lytische Fähigkeiten, Membranbindung, Membrandepolarisation, Porenbildung im künstlichen Bilayer und Effekte auf das Zytoskelett untersucht. Sowohl der Wildtyp als auch die Varianten zeigten die gleiche Stärke an Membranbindung. Diese Untersuchungen weisen darauf hin, dass die Porenbildung für die Zell-Lyse, Membrandepolarisation und zytoskelettale Veränderungen in Mausastrozyten wichtig ist und führt zu der Schlussfolgerung, dass nicht die Membranbindung, sondern die Porenbildung entscheidend für die beobachteten zytoskelettalen Veränderungen ist. Im zweiten Teil dieser Arbeit wurde der Effekt des Pneumolysin auf zelluläre Transportprozesse untersucht. Erneut zeigten die Pneumolysinvarianten keine Wirkung, während der Wildtyp die Gesamtrate der Endozytose erhöhte. Weiterhin wurde nur der Wildtyp internalisiert. Um einen möglichen Mechanismus für die Internalisierung des Toxins vorschlagen zu können, wurde Pneumolysin als GFP-markiertes Toxin genutzt. Weiterhin wurden einige Marker für unterschiedliche endozytotische Transportprozesse genutzt um eine Ko-lokalisation mit Pneumolysin-GFP zu ermöglichen. Des Weiteren wurden Inhibitoren für zwei Schlüsselproteine endozytotischer Vorgänge, Dynamin und Myosin II, genutzt. Die Ergebnisse dieser Untersuchungen zeigten, dass Pneumolysin wahrscheinlich durch dynamin- und caveolin-unabhängige Pinozytose in die Zelle aufgenommen wird. Dieser Mechanismus führt zu der Bildung von Caveosomen, deren weiterer Transport, und somit das Schicksal des internalisierten Toxins, bis heute noch nicht aufgeklärt ist. Die Beobachtung, dass Pneumolysin die Gesamtrate an Endozytose erhöht, führte zum dritten Teil dieser Arbeit. Wenn das Toxin die Gesamtrate an Endozytose erhöht, stellt sich die Frage, ob dieser Vorgang der Zerstörung des Toxins – also einer Abwehr der Zelle – dient, oder ob diese Internalisierung eine Strategie des Pathogens ist, um tiefer in das Wirtsgewebe einzudringen. Aktuelle Studien belegen, dass Pneumolysin einen Einfluss auf inflammatorische Antworten des Immunsystems hat. Aus diesem Grund wurden unterschiedliche proinflammatorische Zytokine untersucht. Überraschenderweise zeigte sich nur eine Erhöhung des Interleukin 6 nach der Toxinbehandlung. Weiterhin hatten die Endozytoseinhibitoren keinen Effekt auf die Produktion dieses proinflammatorischen Zytokins. Pneumolysin führt also zu einem Anstieg der Interleukin 6 Produktion, diese Produktion ist jedoch unabhängig von der Internalisierung dieses Toxins. Die Produktion dieses Interleukins würde zur Produktion der Akute-Phase Proteine, der Aktivierung der T-Zell Antwort, zu Wachstum und Zelldifferenzierung führen. Einerseits könnte diese Aktivierung die Infektion durch das Pathogen bekämpfen. Andererseits könnte S. pneumoniae die erhöhte Produktion durch PLY an Interleukin 6 nutzen um weiter in das Wirtsgewebe vordringen zu können. Diese Frage sollte noch durch weitere Experimente untersucht werden. KW - Streptococcus pneumoniae KW - Toxin KW - Hirnhautentzündung KW - Entzündung KW - Astrozyt KW - Pore KW - Pneumolysin KW - Meningitis KW - Inflammation KW - Zelltransport KW - Porenbildung KW - Pneumolysin KW - Meningitis KW - Inflammation KW - cellular-trafficking KW - Pore-formation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70892 ER - TY - THES A1 - Hupp, Sabrina T1 - Modulation of Actin Dynamics by the Cholesterol-Dependent Cytolysin Pneumolysin - a novel mechanism beyond pore formation T1 - Einfluß des CDCs Pneumolysin auf die Aktin-Dynamik - neue Eigenschaften eines Poren-bildenden Toxins N2 - Streptococcus pneumoniae is one of the major causes of bacterial meningitis, which mainly affects young infants in the developing countries of Africa, Asia (esp. India) and South America, and which has case fatality rates up to 50% in those regions. Bacterial meningitis comprises an infection of the meninges and the sub-meningeal cortex tissue of the brain, whereat the presence of pneumolysin (PLY), a major virulence factor of the pneumococcus, is prerequisite for the development of a severe outcome of the infection and associated tissue damage (e. g. apoptosis, brain edema, and ischemia). Pneumolysin belongs to the family of pore forming, cholesterol-dependent cytolysins (CDCs), bacterial protein toxins, which basically use membrane-cholesterol as receptor and oligomerize to big aggregates, which induce cell lysis and cell death by disturbance of membrane integrity. Multiple recent studies, including this work, have revealed a new picture of pneumolysin, whose cell-related properties go far beyond membrane binding, pore formation and the induction of cell death and inflammatory responses. For a long time, it has been known that bacteria harm the tissues of their hosts in order to promote their own survival and proliferation. Many bacterial toxins aim to rather hijack cells than to kill them, by interacting with cellular components, such as the cytoskeleton or other endogenous proteins. This study was able to uncover a novel capacity of pneumolysin to interact with components of the actin machinery and to promote rapid, actin-dependent cell shape changes in primary astrocytes. The toxin was applied in disease-relevant concentrations, which were verified to be sub-lytic. These amounts of toxin induced a rapid actin cortex collapse in horizontal direction towards the cell core, whereat membrane integrity was preserved, indicating an actin severing function of pneumolysin, and being consistent with cell shrinkage, displacement, and blebbing observed in live cell imaging experiments. In contrast to neuroblastoma cells, in which pneumolysin led to cytoskeleton remodeling and simultaneously to activation of Rac1 and RhoA, in primary astrocytes the cell shape changes were seen to be primarily independent of small GTPases. The level of activated Rac1 and RhoA did not increase at the early time points after toxin application, when the initial shape changes have been observed, but at later time points when the actin-dependent displacement of cells was slower and less severe, probably presenting the cell’s attempt to re-establish proper cytoskeleton function. A GUV (giant unilamellar vesicle) approach provided insight into the effects of pneumolysin in a biomimetic system, an environment, which is strictly biochemical, but still comprises cellular components, limited to the factors of interest (actin, Arp2/3, ATP, and Mg2+ on one side, and PLY on the other side). This approach was able to show that the wildtype-toxin, but not the Δ6 mutant (mutated in the unfolding domain, and thus non-porous), had the capacity to exhibit its functions through a membrane bilayer, meaning it was able to aggregate actin, which was located on the other side of the membrane, either via direct interaction with actin or in an Arp2/3 activating manner. Taking a closer look at these two factors with the help of several different imaging and biochemical approaches, this work unveiled the capacity of pneumolysin to bind and interact both with actin and Arp2 of the Arp2/3 complex. Pneumolysin was capable to slightly stabilize actin in an actin-pyrene polymerization assay. The same experimental setup was applied to show that the toxin had the capacity to lead to actin polymerization through activation of the Arp2/3 complex. This effect was additionally confirmed with the help of fluorescent microscopy of rhodamine (TRITC)-tagged actin. Strongest Arp2/3 activation, and actin nucleation/polymerization is achieved by the VCA domain of the WASP family proteins. However, addition of PLY to the Arp2/3–VCA system led to an enhanced actin nucleation, suggesting a synergistic activation function of pneumolysin. Hence, two different effects of pneumolysin on the actin cytoskeleton were observed. On the one hand an actin severing property, and on the other hand an actin stabilization property, both of which do not necessarily exclude each other. Actin remodeling is a common feature of bacterial virulence strategies. This is the first time, however, that these properties were assigned to a toxin of the CDC family. Cytoskeletal dysfunction in astrocytes leads to dysfunction and unregulated movement of these cells, which, in context of bacterial meningitis, can favor bacterial penetration and spreading in the brain tissue, and thus comprises an additional role of pneumolysin as a virulence factor of Streptococcus pneumonia in the context of brain infection. N2 - S. pneumoniae gehört zur Gruppe der Pathogene, die bakterielle Meningitis verursachen, eine Infektion, die hauptsächlich bei Neugeborenen und Kleinkindern in den Entwicklungsländern von Afrika, Asien und Südamerika auftritt, und in diesen Regionen Sterblichkeitsraten von bis zu 50% aufweist. Meningitis ist eine Infektion der Hirnhäute und dem sich direkt darunter befindlichen Cortex-Gewebe. Pneumolysin (PLY), ein Haupt-Pathogenitätsfaktor des sog. Pneumococcus, ist hauptsächlich verantwortlich für einen schweren Verlauf der Infektion und für Gewebeschädigungen, wie Apoptose, Hirnödemen und Ischämie. Pneumolysin gehört zur Familie der Cholesterol-abhängigen Cytolysine (CDCs), bakteriellen Protein-Toxinen, die an Membran-Cholesterol binden, sich zu großen Aggregaten zusammenschließen und durch die Beeinträchtigung der Membranintegrität (Porenbildung) Zell-Lyse und Zelltod verursachen. Zahlreiche neuere Studien, darunter auch diese Arbeit, haben ein neues Bild von Pneumolysin aufgezeigt, dessen Eigenschaften weit über die Membranbindung, die Poren-Bildung und die Induktion von Zelltod und inflammatorischen Prozessen hinausgehen. Es ist weithin bekannt, dass Bakterien das Gewebe ihres Wirts schädigen, um ihre eigene Vermehrung und ihre Ausbreitung zu begünstigen. In diesem Zusammenhang fungieren bakterielle Toxine als Pathogenitätsfaktoren, die mit zellulären Komponenten, wie dem Zytoskelett und anderen Zytosol-Proteinen interagieren, was allerdings bevorzugt zu Zellveränderungen, und seltener zum Zelltod führt. Die vorliegende Arbeit konnte zeigen, dass Pneumolysin schnelle, und zum Teil gravierende, Aktin-abhängige Zellstruktur-Veränderungen in primären Astrozyten hervorruft. Hierbei wurde das Toxin in Konzentrationen appliziert, die im Liquor von Meningitis-Patienten detektiert werden können, und die zusätzlich als sub-lytisch für Astrozyten in Zellkultur verifiziert wurden. Diese Toxin-Mengen führten zu einem schnellen, horizontalen Aktinkortex-Kollaps, wobei die Membranintegrität erhalten blieb. Dies deutete auf eine „Severing“-Funktion (das Abtrennen oder Zerschneiden von Aktinfilamenten) von Pneumolysin hin, was mit den Beobachtungen übereinstimmt, die in Experimenten mit lebendigen Zellen gemacht wurden (Zellveränderungen, Zellbewegungen und „Blebbings“). Im Gegensatz zu Neuroblastoma Zellen, in denen Pneumolysin Zytoskelett-Veränderungen, und gleichzeitig die Aktivierung von Rac1 und RhoA verursachte, waren die Zell-Veränderungen bei Astrozyten primär unabhängig von der Aktivierung kleiner GTPasen. Obwohl gezeigt werden konnte, dass die Veränderungen vom Aktin-Zytosklett abhängig waren, war das Level an Rac1 und RhoA in den frühen Phasen nach der Toxin-Gabe nicht erhöht. Eine Aktivierung der GTPasen konnte dahingegen zu späteren Zeitpunkten detektiert werden, in denen die Zellbewegung abgeschwächt und verlangsamt war. Die späte Aktivierung kann als Reaktion der Zelle auf die vom Toxin ausgelösten Veränderungen gesehen werden, die zu einer Wiederherstellung der normalen Zytoskelett-Funktion führen soll. GUV-Experimente ermöglichten eine genauere Betrachtung der Pneumolysin-Effekte in einem biomimetischen, jedoch strikt biochemischen Ansatz, der alle zellulären Komponenten enthält, die untersucht werden sollen (Pneumolysin, Aktin, Arp2/3, ATP, und Mg2+). Im GUV-System befand sich das Toxin im Inneren der Vesikel, und Aktin in der extra-vesikulären Suspension, einem Verhältnis genau umgekehrt zum zellullären System. Zusätzlich wurden Arp2/3 und ATP/Mg2+, für die Aktin-Polymerisierung essentielle Faktoren, in der Aktin-Suspension zur Verfügung gestellt. Die GUV-Experimente konnten zeigen, dass Wildtyp-Pneumolysin, allerdings nicht seine Mutante Δ6-PLY (Mutation in der sog. unfolding domain, und deshalb nicht Poren-bildend), seine Effekte auf das Aktin-Zytoskelett durch die Membran-Barriere hindurch, in einer Membran-gebundenen Form ausüben kann. Aktin wurde an den Stellen höchster Toxinbindung aggregiert, was entweder über eine direkte Interaktion von PLY mit Aktin, oder über eine Aktivierung des Aktin-Effektors Arp2/3 durch Pneumolysin erklärt werden kann. Weitere biochemische Ansätze (wie enzyme-linked sorbent assays, ELSAs) und Mikroskopie-Techniken (Immunocyto-Chemie) konnten beweisen, dass Pneumolysin sowohl mit Aktin, als auch mit Arp2 (einer Komponente des heptameren Arp2/3 Proteinkomplexes) direkt interagieren kann. Aktin-Pyren Experimente und Fluoreszenzmikroskopie (von TRITC-markiertem Aktin) wiesen auf eine Kapazität von Pneumolysin hin, Aktin direkt zu stabilisieren, und über die Aktivierung von Arp2/3 eine Aktin-Polymerisierung hervorrufen zu können. KW - Hirnhautentzündung KW - Bakteriengift KW - Perforine KW - Actin KW - Meningitis KW - Meningitis KW - Bacterial Toxins KW - Pneumolysin KW - Actin KW - Pore formation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70889 ER - TY - THES A1 - Nikulin, Joanna T1 - Untersuchungen zu intrazellulären Folgereaktionen von Neisseria meningitidis und Escherichia coli K1 in HBMEC (human brain microvascular endothelial cells) T1 - Intracellular survival and replication of Neisseria meningitidis and Escherichia coli K1 in HBMEC (human brain microvascular endothelial cells) N2 - Neisseria meningitidis ist einer der wichtigsten Erreger bakterieller Meningitiden und gefürchtet für das Potential Epidemien auszulösen. Die Meningokokken-Meningitis bleibt bis heute auch in Industrieländern mit hoher Mortalität verbunden. Um eine Meningitis verursachen zu können, müssen Meningokokken die Blut-Hirn/Liquor-Schranke überqueren. Dies erfolgt vermutlich über den transzellulären Weg durch die Endothelzellbarriere der Gehirnkapillare. Ereignisse unmittelbar vor der bakteriellen Internalisierung sind vielfach untersucht, noch wenig erforscht sind jedoch die in der Endothelzelle durch den initialen Kontakt des Erregers ausgelösten Signalkaskaden. Die Rolle des für eine ADP-Ribosyltransferase kodierenden narE Gens in der Pathogenese der Meningokokken-Infektion und die mögliche Bedeutung in der Aktivierung von Signaltransduktionsmechanismen wird diskutiert. Eine narE Insertionsmutante wurde hergestellt und charakterisiert. Anschließend wurde die Aktivierung der extracellular signal regulated kinase (ERK) im Verlauf von Infektionsassays in HBMEC (human brain microvascular endothelial cell) mittels Western Blot untersucht. Eine Zu- oder Abnahme in der Phosphorylierung von ERK und folglich eine Aktivierung oder Deaktivierung der ERK-vermittelten Signalkaskaden in HBMEC konnte jedoch im Laufe der Infektion bei der narE Mutante im Vergleich zum Wildtypstamm nicht festgestellt werden. Elektronenmikroskopische Aufnahmen zeigen Meningokokken intrazellulär einzeln aber auch zu mehreren in phagosomenähnlichen membranumgebenen Strukturen. Die Fähigkeit von N. meningitidis sich intrazellulär zu replizieren wurde mittels Infektions-assay untersucht. Bekapselte Meningokokken waren in der Lage, sich sowohl in Epithel- als auch in Endothelzellen zu replizieren, während unbekapselte Erreger intrazellulär abgetötet wurden. Bei Meningokokken wie auch beim Erreger neonataler Meningitiden E. coli K1 wird eine O-Acetylierung des Kapselpolysaccharids beobachtet. Die biologische Bedeutung der O-Acetylierung der Sialinsäure wurde in Infektionsassays mit einem nicht acetylierten E. coli K1 Stamm und einer isogenen konstitutiv acetylierten Mutante untersucht. In der Adhärenz an und Invasion in HBMEC konnten keine signifikanten Unterschiede festgestellt werden. Eine stärker ausgeprägte intrazelluläre Replikation wurde jedoch nach einer Verzögerung von mehreren Stunden bei dem nicht acetylierten Isolat beobachtet. Um die Neisseria containing Vacuole (NCV) näher zu charakterisieren und mögliche Interaktionen mit dem Endozytoseweg in HBMEC zu untersuchen, wurde eine dreifache Immunfluoreszenzfärbung zur simultanen Darstellung intrazellulärer Meningokken und spezifischer Marker des frühen bzw. späten Endosoms und Lysosoms etabliert. Eine Akquirierung des Transferrinrezeptors als Marker für das frühe Endosom und des Lamp-1 (lysosomal associated membrane protein 1) als Marker für das späte Endosom konnte durch Kolokalisationsstudien mittels Immunfluoreszenzmikroskopie gezeigt werden. N2 - In order to cause meningitis the extracellular pathogen Neisseria meningitidis has to traverse the blood-brain-barrier (BBB). It remains unclear, if the passage occurs through a transcellular or paracellular pathway. Postulating a transcellular passage, meningococci (MC) have been shown to adhere to and enter into BBB forming human brain microvascular endothelial cells (HBMECs). Furthermore, electron microscopy studies demonstrate that intracellular MC reside within membrane-bound compartments both solitary and in groups. Whether this is a result of simultaneous uptake or vacuole fusion or possible intracellular replication needs to be assessed. In order to investigate the ability of MC to survive and replicate intracellularly, prolonged gentamicin protection assays were performed using human epithelial (HEp-2) and endothelial (HBMEC) cells. Cells were infected with encapsulated and unencapsulated N. meningitidis serogroup B mutants in order to identify the potential role of the polysaccharide capsule for the intracellular survival. Encapsulated bacteria were found to be able to survive and, after an initial delay, to replicate within both endothelial and epithelial cells, whereas the number of intracellular capsule-deficient mutants decreased continuously. This strongly suggests that the capsule plays a pivotal role for the intracellular survival of MC both in epithelial and endothelial cells. Further investigations were initiated to characterise the membran-bound compartment, the Neisseria containing vacuole (NCV). Immunfluorescence microscopy studies showed that NCV acquire the early endosomal marker protein transferrin receptor and the lysosomal marker protein Lamp-1 respectively. The acquisition of further marker proteins as well as the kinetics of the association of these with NCV remain to be studied. KW - Neisseria meningitidis KW - Escherichia coli K1 KW - Meningitis KW - HBMEC KW - intrazellulär KW - Neisseria meningitidis KW - Escherichia coli K1 KW - meningitis KW - HBMEC KW - intracellular Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16552 ER -