TY - THES A1 - Feick, Jörn T1 - Relevanz lokaler Blutgasparameter innerhalb des zerebralen Kollateralkreislaufs während akuter zerebraler Ischämie T1 - Distinct Alterations in Oxygenation, Ion Composition and Acid-Base Balance in Cerebral Collaterals During Large-Vessel Occlusion Stroke N2 - Störungen der Ionen- und Blutgas Homöostase mit Verschiebungen von Na+ und K+ in der regionalen Hypoxie sind ein Kennzeichen der experimentellen zerebralen Ischämie, wurden aber in ihrer Bedeutung für Schlaganfallpatienten noch nicht hinreichend untersucht. Wir berichten über eine prospektive, humane Querschnittsstudie an 366 Schlaganfallpatienten, die mit einer endovaskulären Rekanalisation bei einem akuten LVO der vorderen Zirkulation zwischen dem 18.Dezember 2018 und dem 31.August 2020 behandelt wurden. Im Rahmen der vorliegenden Dissertationsarbeit wurden intraprozedural arterielle Blutgasproben (1ml) aus dem lokal ischämischen Kollateralkreislauf und der intraindividuellen systemischen Referenzlokalisation in 51 Patienten gewonnen. Die Probengewinnung mit Hilfe eines Mikrokatheters erfolgte nach einem bereits veröffentlichten Protokoll. Diese Arbeit weist in der Perakutphase eines Großgefäßverschlusses signifikant nach, dass der lokal ischämische paO2 (-4,29%, paO2ischämisch=185,3 mmHg vs. paO2systemisch=193,6mmHg; p=0,035) und die Konzentration von K+ (-5,49%, K+ischämisch=3,44mmol/L vs. K+systemisch=3,64mmol/L; p=0,0081) signifikant reduziert war. Wir beobachteten, dass der Na+:K+-Quotient in der Kollateralzirkulation (+3,29%; Na+:K+-Quotientischämisch=41,74 vs. Na+:K+-Quotientsystemisch=40,38; p=0,0048) im Vergleich zur systemischen Zirkulation signifikant erhöht war, während die Na+-Konzentration signifikant positiv mit einer Zunahme des Infarktausmaßes assoziiert war (r=0,42, p=0,0033). Wir fanden eine alkaline Tendenz des zerebralen pH (+0,14%, pHischämisch=7,38 vs. pHsystemisch=7,37, p=0,0019), mit einer zeitabhängigen Verschiebung in den azidotischen Bereich (r=-0,36, p=0,0549). Schlussfolgernd deuten unsere Ergebnisse darauf hin, dass die durch den Schlaganfall verursachten Veränderungen der zerebralen Sauerstoffversorgung, der Ionenzusammensetzung und des Säure-Basen-Gleichgewichts dynamisch auftreten, während der okklusiven Ischämie fortschreiten und mit der akuten Gewebeschädigung im Zusammenhang stehen. Wünschenswert sind weitere prospektive Studien, um die Ergebnisse valide zu reproduzieren. N2 - Disturbances of ion and blood gas homeostasis encompassing massive sodium (Na+)/potassium (K+) shifts and regional hypoxia are a hallmark of experimental cerebral ischemia, but have not been sufficiently investigated for their relevance in stroke patients. We report a prospective observa-tional study on 366 stroke patients who underwent endovascular thrombectomy (EVT) for large-vessel occlusion (LVO) of the anterior circulation (18 Dec 2018-31 Aug 2020). Intraprocedural blood gas samples (1ml) from within the cerebral collateral circulation (ischemic) and matched intraindividual systemic control samples were obtained according to a prespecified protocol in 51 patients. We observed a significant reduction in cerebral oxygen partial pressure (-4.29%, paO2ischemic=185.3 mmHg vs. paO2systemic=193.6; p=0.035) and potassium concentrations (-5.49%, K+ischemic=3.44 mmol/L vs. K+systemic=3.64 mmol/L; p=0.0081). The cerebral Na+: K+ ratio was signifi-cantly increased (Na+: K+ ratioischemic=41.74 vs. Na+: K+ ratiosystemic=40.38; p=0.0048) while sodium concentrations were positively correlated with tissue integrity (r=0.42, p=0.0033). We found more alkaline cerebral pH values (+0.14%, pHischemic=7.38 vs. pHsystemic=7.37, p=0.0019), with a time-dependent shift towards more acidotic conditions (r=-0.36, p=0.0549). These findings suggest that stroke-induced changes in cerebral oxygen supply, ion composition and acid-base balance dynamically occur and progress during occlusive ischemia, and are related to acute tissue damage. Further prospective studies are desirable in order to validly reproduce our results. KW - ischämischer Schlaganfall KW - Schlaganfall KW - Hirnkrankheit / Ischämie KW - zerebrale Ischämie KW - Großgefäßverschluss KW - arterielle Blutgasanalyse KW - mechanische Thrombektomie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351678 ER - TY - THES A1 - Ittner, Cora T1 - Veränderte Barriereeigenschaften der Blut-Hirn-Schranke durch Katecholamine und Entzündungsmediatoren bei Sauerstoff-Glucose-Entzug \(in\) \(vitro\) T1 - Altered barrier properties of the blood brain barrier caused by catecholamines and inflammatory mediators during oxygen glucose deprivation \(in\) \(vitro\) N2 - Das zeitgleiche Auftreten eines ischämischen Schlaganfalls sowie eines Takotsubo-Syndroms (TTS) scheint eine relevante, bisher nicht ausreichend verstandene klinische Konstellation zu sein. Die Pathologien können als über die Hirn-Herz-Achse gekoppelt verstanden werden, in die die Blut-Hirn-Schranke (BHS) als funktionale Komponente integriert ist. Das klinisch-neurologische Outcome dieses Patient:innen-Kollektivs scheint signifikant schlechter zu sein als nach solitärem ischämischen Insult. Es wurde hypothetisiert, dass die BHS in besonderem Maße kompromittiert sein könnte. Das vorwiegend weibliche, postmenopausale Patient:innenkollektiv präsentierte laborchemisch elevierte Katecholaminspiegel sowie Entzündungsparameter. Diese Konditionen wurden unter Sauerstoff-Glucose-Entzug (OGD) in vitro simuliert und resultierende Alterationen eines etablierten BHS-Modells aus murinen cEND-Zellen der cerebralen Mikrozirkulation untersucht. Die Evaluation der BHS-Integrität erfolgte anhand von spezifischen Junktionsproteinen sowie Integrinuntereinheiten. Alle Versuche wurden parallel unter Östrogen-Applikation (E2) durchgeführt, um die mögliche BHS-Protektion durch das weibliche Sexualhormon zu untersuchen. Die getrennte Applikation von Katecholaminen (KAT) sowie Entzündungsmediatoren (INF) führte gegenüber der simultanen Applikation zu einem geringeren BHS-Schaden. Dieser erschien zeitgebunden, wobei sich das Ausmaß gewissermaßen proportional zur Einwirkdauer verhielt. Auswirkungen von OGD sowie einer Reoxygenierung, im Sinne einer simulierten Reperfusion, potenzierten sich mit den Effekten von KAT/INF. Überwiegend kompromittierten OGD und KAT/INF die BHS-Integrität, wobei nach Reoxygenierung eine „Erholung“ oder ein „Reperfusionsschaden“ vorlag. Eine Protektion durch E2 war morphologisch nachweisbar, speziell gegenüber OGD, KAT/INF sowie einem „Reperfusionsschaden“. Auf Ebene der Gen- sowie Proteinexpression konnte dies nicht gezeigt werden. Die Homöostase des ZNS würde in vivo beeinträchtigt, Katecholamine sowie Entzündungsmediatoren könnten ungehindert das bereits durch die Ischämie geschädigte neuronale Gewebe erreichen. Insgesamt trägt diese Arbeit zu einem Verständnis der molekularen BHS-Veränderungen im Kontext des zeitgleichen Auftretens von TTS und einem ischämischem Insult bei. Es wurde eine experimentelle Grundlage geschaffen, um zukünftig pathogenetische Hintergründe weiter erforschen zu können. Darauf aufbauend könnten, nach weiterer in vitro- sowie in vivo-Forschung, klinische Therapiekonzepte optimiert werden. N2 - The simultaneous occurrence of ischemic stroke and Takotsubo syndrome (TTS) seems to be a relevant clinical constellation that is not yet sufficiently understood. The pathologies can be understood as being linked via the brain-heart axis, into which the blood-brain barrier (BBB) is integrated as a functional component. The clinical and neurological outcome of these patients appears to be significantly worse than after a solitary ischemic insult. It has been hypothesized that the BBB may be compromised. The predominantly female, postmenopausal patients presented elevated catecholamine levels and inflammatory markers. These conditions were simulated in vitro under oxygen-glucose deprivation (OGD) condition. Resulting alterations were examined by using an established BBB model: cEND cells of the murine cerebral microcirculation. The BBB integrity was evaluated by investigating specific junction proteins and integrin subunits. All experiments were conducted parallel with estrogen application (E2) in order to investigate a possible BBB protection by the female sexhormone. The separate application of catecholamines (CAT) or inflammatory mediators (INF) led to less BBB damage compared to simultaneous application. This appeared to be time-bound being proportional to the duration of exposure. The effects of OGD and reoxygenation, in the sense of simulated reperfusion therapy, were potentiated by the effects of CAT/INF. Predominantly, OGD and KAT/INF compromised BBB integrity. “Recovery” or “reperfusion injury” occurred after reoxygenation. Protection by E2 was morphologically detectable, especially against OGD, CAT/INF and “reperfusion injury”. This could not be shown at the level of gene or protein expression, respectively. The homeostasis of the CNS would be impaired in vivo, catecholamines and inflammatory mediators would be able to reach the neuronal tissue that had already been damaged by ischemia. Overall, this work contributes to an understanding of the molecular changes in the BBB in the context of the simultaneous occurrence of TTS and ischemia. An experimental basis was created to enable further research into pathogenetic background. Based on this, clinical therapies could be optimized after further in vitro and in vivo research. KW - Blut-Hirn-Schranke KW - Endothelzelle KW - cEND-Zellen KW - Katecholamine KW - Takotsubo-Syndrom KW - Catecholamine KW - Entzündung KW - in vitro KW - Stress-Kardiomyopathie KW - Schlaganfall Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346497 ER - TY - THES A1 - Zimmermann [née Papp], Lena T1 - Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke T1 - Thrombozyten als Modulatoren der Blut-Hirn-Schrankenstörung und Inflammation in der Pathophysiologie des ischämischen Schlaganfalls N2 - Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS. N2 - Eine häufig auftretende Komplikation in der Behandlung des ischämischen Schlaganfalls ist der Ischämie/Reperfusion Schaden (I/R Schaden), welcher trotz der erfolgreichen Wiederherstellung der zerebralen Durchblutung durch ein paradoxes Fortschreiten des entstandenen Gewebeschadens charakterisiert ist. Dieses Phänomen wird durch das schädigende Zusammenspiel von Thrombozyten und inflammatorischen Zellen am vaskulären Endothel verursacht. Allerdings sind die räumlich-temporalen und molekularen Mechanismen dieser zellulären Interaktionen und deren Beteiligung am Infarktwachstum noch nicht vollständig verstanden. Daraus folgend, beabsichtigte diese Arbeit eben diese temporalen Mechanismen des fortschreitenden Infarktwachstums nach der zerebralen Gefäßwiedereröffnung aufzuklären. Die hier vorgestellten Daten implizieren, dass das anhaltende Fortschreiten des Gewebeschadens durch die Schädigung der Bluthirnschranke verursacht wird und somit unabhängig vom Auftreten sekundär gebildeter Thromben ist. In vorangegangenen Studien konnte die Freisetzung von thrombozytären Granula als molekularer Mechanismus, mit welchem Thrombozyten zum I/R Schaden beitragen, aufgedeckt werden. Basierend auf diesen Studien wurde in dieser Arbeit ein besonderes Augenmerk auf die Sekretion thrombozytärer Granula im Zusammenhang mit der Beeinträchtigung der endothelialen Barriere gelegt. Durch die Kombination eines in vitro Ansatzes mit einem murinen Model des ischämischen Schlaganfalls konnte gezeigt werden, dass α-Granula endothelialen Schaden verursachen, wohingegen deren Absenz (NBEAL2 Defizienz) zu einer verbesserten mikrovaskulären Integrität führte. Aufgrund dessen könnte das Adressieren der α-Granula als eine neuartige Therapieoption zum Erhalt der vaskulären Integrität und zur Verminderung des Infarktwachstums trotz Rekanalisation genutzt werden. Neuste Erkenntnisse enthüllten, dass die dem I/R Schaden zu Grunde liegenden Pathomechanismen bereits während des Verschlusses eines großen hirnversorgenden Gefäßes zu beobachten sind. Dies deutet darauf hin, dass der Verlust von penumbralem Gewebe unter Okklusion und I/R Schädigung während der Reperfusion im engen Zusammenhang stehen. Im Einklang hiermit konnten humane Daten eine Neutrophilen-dominierte Immunantwort und lokale Thrombozyten Aktivierung und deren Sekretion, anhand der Detektion der α-Granula Hauptkomponenten, im verschlossenen Gefäßsystem von ischämischen Schlaganfall Patienten nachweisen. Diese anfänglichen Beobachtungen konnten im Rahmen dieser Arbeit anhand durchflusszytometrischer Untersuchungen von lokal abgenommenen ischämischen Blutproben erweitert werden. Die Phänotypisierung von Immunzellen enthüllte eine bisher unbekannte Verschiebung der Lymphozyten Population hin zu CD4+ T-Zellen und bekräftigte zusätzlich das Konzept einer unmittelbaren intravaskulären Immunantwort, welche durch Granulozyten dominiert wird. Darüber hinaus konnte in dieser Thesis das erste Mal das erhöhte Auftreten von Thrombozyten-Leukozyten-Aggregaten in dem verschlossenen humanen Gefäßsystem nachgewiesen werden. Demzufolge könnte eine Beeinflussung von Immunzellen und/oder Thrombozyten bereits unter Okklusion als potentiell vielversprechende Strategie genutzt werden, um die Ausweitung des Infarktes einzuschränken und klinische Endpunkte nach einem ischämischen Schlaganfall zu verbessern. KW - Schlaganfall KW - Thrombozyt KW - Entzündung KW - Thrombo-inflammation KW - Ischemic stroke KW - Platelets KW - Inflamamtion KW - Immune cells KW - Vascular system Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302850 ER -